Skip to main content

Dual Path DNN Based Heterogenous Reference Image Quality Assessment via Decoupling the Quality Difference and Content Difference

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

Blind image quality assessment (BIQA) is a fundamental yet challenging task in the field of low-level computer vision. The difficulty is particularly due to the limited information, for which the corresponding reference for comparison is typically absent. In order to improve the accuracy and generalization ability of BIQA metrics, our work proposes a dual-path deep neural network (DNN) based heterogenous reference BIQA framework in which an arbitrarily selected pristine image is employed to provide important prior quality information for the IQA framework. The proposed IQA metric is still ‘blind’ since the corresponding reference image is unseen, but our metric could obtain more prior quality information than previous work with the help of heterogenous reference. Experimental results indicate that our proposed BIQA framework is as competitive as state-of-the-art BIQA models.

Supported by The Public Welfare Technology Application Research Project of Zhengjiang Province, China (LGF21F010001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Author, F.: Article title. Journal 2(5), 99–110 (2016)

    Google Scholar 

  2. Wang, Z., Bovik, A.C.: Modern image quality assessment. Synthesis Lect. Image Video Multimed. Process. 37–44 (2006)

    Google Scholar 

  3. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  4. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)

    Article  Google Scholar 

  5. Xue, W., Zhan, L., Mou, X., et al.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 684–695 (2014)

    Article  MathSciNet  Google Scholar 

  6. Zhang, L., Zhang, L., Mou, X., et al.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  Google Scholar 

  7. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: 2004 Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  8. Zhang, L., Shen, Y., Li, H.: VSI: a visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 23(10), 4270–4281 (2014)

    Article  MathSciNet  Google Scholar 

  9. Li, S., Zhang, F., Ma, L., et al.: Image quality assessment by separately evaluating detail losses and additive impairments. IEEE Trans. Multimed. 13(5), 935–949 (2011)

    Article  Google Scholar 

  10. Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006–011006-21 (2010)

    Google Scholar 

  11. Chang, H.W., Yang, H., Gan, Y., Wang, M.-H.: Sparse feature fidelity for perceptual image quality assessment. IEEE Trans. Image Process. 22(10), 4007–4018 (2013)

    Article  MathSciNet  Google Scholar 

  12. Liu, T.J., Lin, W., Kuo, C.C.: Image quality assessment using multi-method fusion. IEEE Tran. Image Process. 22(5), 1793–1807 (2013)

    Article  MathSciNet  Google Scholar 

  13. Wang, Z., Bovik, A.C.: Reduced-and no-reference image quality assessment. IEEE Signal Process. Mag. 28(6), 29–40 (2011)

    Article  Google Scholar 

  14. Rehman, A., Wang, Z.: Reduced-reference image quality assessment by structural similarity estimation. IEEE Trans. Image Process. 21(8), 3378–3389 (2012)

    Article  MathSciNet  Google Scholar 

  15. Wang, Z., Simoncelli, E.P.: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. In: Human Vision and Electronic Imaging X. International Society for Optics and Photonics, vol. 5666, pp. 149–159 (2005)

    Google Scholar 

  16. Pan, D., Shi, P., Hou, M., Ying, Z., Fu, S., Zhang, Y.: Blind predicting similar quality map for image quality assessment. In: International Conference on Computer Vision and Pattern Recognition. IEEE (2018)

    Google Scholar 

  17. Lin, K.-Y., et al.: Hallucinated-IQA: no reference image quality assessment via adversarial learning. In: International Conference on Computer Vision and Pattern Recognition. IEEE (2018)

    Google Scholar 

  18. Kim, J., Lee, S.: Fully deep blind image quality predictor. IEEE J. Sel. Top. Signal Process. 11(1), 206–220 (2017)

    Article  Google Scholar 

  19. Talebi, H., Milanfar, P.: NIMA: neural image assessment. IEEE Trans. Image Process. 27(8), 3998–4011 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ma, K., et al.: dipIQ: blind image quality assessment by learning-to-rank discriminable image pairs. IEEE Trans. Image Process. 26(8), 3951–3964 (2017)

    Article  MathSciNet  Google Scholar 

  21. Liu, X., van de Weijer, J., Bagdanov, A.D.: RankIQA: learning from rankings for no-reference image quality assessment. In: ICCV (2017)

    Google Scholar 

  22. Oszust, M.: Decision fusion for image quality assessment using an optimization approach. IEEE Signal Process. Lett. 23(1), 65–69 (2016)

    Article  Google Scholar 

  23. Pei, S.C., Chen, L.H.: Image quality assessment using human visual DoG model fused with random forest. IEEE Trans. Image Process. 24(11), 3282–3292 (2015)

    Article  MathSciNet  Google Scholar 

  24. Gao, F., Wang, Y., Li, P., et al.: DeepSim: deep similarity for image quality assessment. Neurocomputing 257, 104–114 (2017)

    Article  Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Bosse, S., Maniry, D., Müller, K., Wiegand, T., Samek, W.: Deep neural networks for no-reference and full-reference image quality assessment. IEEE Trans. Image Process. 27(1), 206–219 (2018)

    Article  MathSciNet  Google Scholar 

  27. Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. In: CVPR (2014)

    Google Scholar 

  28. Kang, L., Ye, P., Li, Y., Doermann, D.S.: Simultaneous estimation of image quality and distortion via multi-task convolutional neural networks. In: ICIP (2015)

    Google Scholar 

  29. Liang, Y., Wang, J., Wan, X., Gong, Y., Zheng, N.: Image quality assessment using similar scene as reference. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 3–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_1

    Chapter  Google Scholar 

  30. Xu, J., Ye, P., Li, Q., Du, H., Liu, Y., Doermann, D.: Blind image quality assessment based on high order statistics aggregation. TIP 25, 4444–4457 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  32. Lin, Z., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 24(8), 2579–2591 (2015)

    Article  MathSciNet  Google Scholar 

  33. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a ‘completely blind’ image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  34. Freitas, P.G., Akamine, W.Y.L., de Farias, M.C.Q.: Blind image quality assessment using local variant patterns. In: 2017 Brazilian Conference on Intelligent Systems (BRACIS), pp. 252–257. IEEE (2017)

    Google Scholar 

  35. Kim, J., Lee, S.: Deep blind image quality assessment by employing FR-IQA. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3180–3184 (2017)

    Google Scholar 

  36. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. TIP 15(11), 3440–3451 (2006)

    Google Scholar 

  37. Ponomarenko, N.: Color image database TID2013: peculiarities and preliminary results. In: Proceedings of 4th European Workshop on Visual Information Processing, pp. 106–111 (2014)

    Google Scholar 

  38. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. - Proc. Track 9, 249–256 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingguo Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, X., Wang, Y., Zhang, S., Yu, D. (2022). Dual Path DNN Based Heterogenous Reference Image Quality Assessment via Decoupling the Quality Difference and Content Difference. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13458. Springer, Cham. https://doi.org/10.1007/978-3-031-13841-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13841-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13840-9

  • Online ISBN: 978-3-031-13841-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics