Skip to main content

Micro Vision-based Sharpening Quality Detection of Diamond Tools

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13458))

Included in the following conference series:

  • 2624 Accesses

Abstract

Ultra-precision grinding is the last critical step in diamond tool machining. At present, most of the tool quality detection methods in the grinding process are offline measurement, which will reduce production efficiency. The general tool condition monitoring (TCM) method is designed for the use of the tool for processing and production, and there are relatively few studies on the detection in the process of producing diamond tools. Referring to the general TCM method, this paper adopts the machine vision detection method based on deep learning to realize the on-machine detection of the grinding quality of diamond tools. The method proposed in this paper is optimized for the recognition of small-sized defect targets of diamond tools, and the impact of less data on the training of the recognition network is improved. First, an imaging system is built on an ultra-precision grinder to obtain information suitable for detecting defective targets. These tool images are then used to train an optimized object recognition network, resulting in an object recognition network model. Finally, the performance of the network on the task of diamond tool defect recognition is verified by experiments. The experimental results show that the method proposed in this paper can achieve an average accuracy of 87.3% for diamond tool detection and a 6.0% improvement in position accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, K., Shimizu, Y., Matsukuma, H., Cai, Y., Gao, W.: An application of the edge reversal method for accurate reconstruction of the three-dimensional profile of a single-point diamond tool obtained by an atomic force microscope. Int. J. Adv. Manuf. Technol. 117(9–10), 2883–2893 (2021). https://doi.org/10.1007/s00170-021-07879-6

    Article  Google Scholar 

  2. Yang, N., Huang, W., Lei, D.: Diamond tool cutting edge measurement in consideration of the dilation induced by AFM probe tip. Measurement 139, 403–410 (2019)

    Article  Google Scholar 

  3. Azmi, A.: Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites. Adv. Eng. Softw. 82, 53–64 (2015)

    Article  Google Scholar 

  4. Kaya, B., Oysu, C., Ertunc, H.M.: Force-torque based on-line tool wear estimation system for CNC milling of Inconel 718 using neural networks. Adv. Eng. Softw. 42(3), 76–84 (2011)

    Article  Google Scholar 

  5. Wang, G., Yang, Y., Xie, Q., Zhang, Y.: Force based tool wear monitoring system for milling process based on relevance vector machine. Adv. Eng. Softw. 71, 46–51 (2014)

    Article  Google Scholar 

  6. Rao, K.V., Murthy, B., Rao, N.M.: Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network. Measurement 51, 63–70 (2014)

    Article  Google Scholar 

  7. Scheffer, C., Heyns, P.: Wear monitoring in turning operations using vibration and strain measurements. Mech. Syst. Signal Process. 15(6), 1185–1202 (2001)

    Article  Google Scholar 

  8. Li, X.: A brief review: acoustic emission method for tool wear monitoring during turning. Int. J. Mach. Tools Manuf. 42(2), 157–165 (2002)

    Article  Google Scholar 

  9. Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D.: Advanced monitoring of machining operations. CIRP Ann. 59(2), 717–739 (2010)

    Article  Google Scholar 

  10. Peng, R., Pang, H., Jiang, H., Hu, Y.: Study of tool wear monitoring using machine vision. Autom. Control. Comput. Sci. 54(3), 259–270 (2020)

    Article  Google Scholar 

  11. Kurada, S., Bradley, C.: A review of machine vision sensors for tool condition monitoring. Comput. Ind. 34(1), 55–72 (1997)

    Article  Google Scholar 

  12. Girshick, R.: Fast r-CNN. In: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448 (2015)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, W., Zhao, C., Fu, W., Du, J., Yao, Y. (2022). Micro Vision-based Sharpening Quality Detection of Diamond Tools. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13458. Springer, Cham. https://doi.org/10.1007/978-3-031-13841-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13841-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13840-9

  • Online ISBN: 978-3-031-13841-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics