Skip to main content

Revised Discrete Control Barrier Functions for Safe Control of a Redundant DoF Manipulator

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13458))

Included in the following conference series:

  • 2704 Accesses

Abstract

The control barrier function provides an efficient tool to ensure the safety of Human-robot interaction. In this paper, we represent the barrier function in the discrete-time form together with the control Lyapunov function for safety operation in human-robot coexisting environment. And we apply it to the kinematic control of the redundant degree-of-freedom manipulator in the task space without disturbing the robot’s job. Specially, we revise the definition of the minimum distance from each link to the human so that no collision happens on any link of the robot. The effectiveness of the control method is verified by simulation of controlling a planar three-link manipulator.

National Natural Science Foundation of China (U20A20282, 51875554, 51705510), Zhejiang Key R &D Plan (2018C01086), Zhejiang Key Lab of Robotics and Intelligent Manufacturing Equipment Technology (2015E10011), Equipment R &D Fund (6140923010102), and Ningbo S &T Innovation Key Project (2018D10010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, A., Sreenath, K.: Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation. In: Robotics: Science and Systems. vol. 13. Cambridge, MA, USA (2017)

    Google Scholar 

  2. Ames, A.D., Galloway, K., Sreenath, K., Grizzle, J.W.: Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics. IEEE Trans. Autom. Control 59(4), 876–891 (2014)

    Article  MathSciNet  Google Scholar 

  3. Ames, A.D., Grizzle, J.W., Tabuada, P.: Control barrier function based quadratic programs with application to adaptive cruise control. In: 53rd IEEE Conference on Decision and Control, pp. 6271–6278. IEEE (2014)

    Google Scholar 

  4. Ames, A.D., Xu, X., Grizzle, J.W., Tabuada, P.: Control barrier function based quadratic programs for safety critical systems. IEEE Trans. Autom. Control 62(8), 3861–3876 (2016)

    Article  MathSciNet  Google Scholar 

  5. Grizzle, J., Kang, J.M.: Discrete-time control design with positive semi-definite Lyapunov functions. Syst. Control Lett. 43(4), 287–292 (2001)

    Article  MathSciNet  Google Scholar 

  6. Hegde, A., Ghose, D.: Multi-UAV collaborative transportation of payloads with obstacle avoidance. IEEE Control Syst. Lett. 6, 926–931 (2021)

    Article  Google Scholar 

  7. Landi, C.T., Ferraguti, F., Costi, S., Bonfè, M., Secchi, C.: Safety barrier functions for human-robot interaction with industrial manipulators. In: 2019 18th European Control Conference (ECC), pp. 2565–2570. IEEE (2019)

    Google Scholar 

  8. Lynch, K.M., Park, F.C.: Modern Robotics. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  9. Maurtua, I., Ibarguren, A., Kildal, J., Susperregi, L., Sierra, B.: Human-robot collaboration in industrial applications: safety, interaction and trust. Int. J. Adv. Rob. Syst. 14(4), 1729881417716010 (2017)

    Google Scholar 

  10. Nguyen, Q., Hereid, A., Grizzle, J.W., Ames, A.D., Sreenath, K.: 3D dynamic walking on stepping stones with control barrier functions. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 827–834. IEEE (2016)

    Google Scholar 

  11. Rauscher, M., Kimmel, M., Hirche, S.: Constrained robot control using control barrier functions. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 279–285. IEEE (2016)

    Google Scholar 

  12. Siciliano, B.: Kinematic control of redundant robot manipulators: a tutorial. J. Intell. Rob. Syst. 3(3), 201–212 (1990). https://doi.org/10.1007/BF00126069

    Article  Google Scholar 

  13. Singletary, A., Klingebiel, K., Bourne, J., Browning, A., Tokumaru, P., Ames, A.: Comparative analysis of control barrier functions and artificial potential fields for obstacle avoidance. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8129–8136. IEEE (2020)

    Google Scholar 

  14. Singletary, A., Kolathaya, S., Ames, A.D.: Safety-critical kinematic control of robotic systems. IEEE Control Syst. Lett. 6, 139–144 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y., Chen, S., Zhang, C., Piao, Z., Yang, G. (2022). Revised Discrete Control Barrier Functions for Safe Control of a Redundant DoF Manipulator. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13458. Springer, Cham. https://doi.org/10.1007/978-3-031-13841-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13841-6_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13840-9

  • Online ISBN: 978-3-031-13841-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics