Skip to main content

Detecting Temporal Pain Status of Postoperative Children from Facial Expression

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13458))

Included in the following conference series:

  • 3041 Accesses

Abstract

Insufficient analgesia during resuscitation of postoperative children may lead to sequelae such as atelectasis and worsening respiratory function, so timely and accurate detection of pain status in children is essential. At present, the pain status of children is mainly judged by nurses based on facial pain expression scales, which is highly subjective. At the same time, with the increasing shortage of medical resources, untimely detection of pain in children often occurs. In this paper, We built an automatic detection system to detect the pain state of children in real-time, which significantly reduced the workload of medical staff. Specifically, we first design a set of highly flexible facial expression acquisition devices, and then we build a children facial pain expression dataset with the help of clinical experts. After that, we propose an end-to-end children pain detection network, which can automatically evaluate the pain status of children in real-time in an end-to-end framework. Experimental results demonstrate that the evaluation accuracy of the proposed network is higher than that of untrained volunteers and is comparable to the results of clinical experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bargshady, G., Zhou, X., Deo, R.C., Soar, J., Whittaker, F., Wang, H.: Enhanced deep learning algorithm development to detect pain intensity from facial expression images. Expert Syst. Appl. 149, 113305 (2020)

    Article  Google Scholar 

  2. Beyer, J.E., Denyes, M.J., Villarruel, A.M.: The creation, validation, and continuing development of the Oucher: a measure of pain intensity in children. J. Pediatr. Nurs. 7(5), 335–346 (1992)

    Google Scholar 

  3. Breivik, H.: Assessment of pain. BJA Br. J. Anaesth. 101(1), 17–24 (2008)

    Article  Google Scholar 

  4. Bringuier, S., Macioce, V., Boulhais, M., Dadure, C., Capdevila, X.: Facial expressions of pain in daily clinical practice to assess postoperative pain in children: reliability and validity of the facial action summary score. Eur. J. Pain 25(5), 1081–1090 (2021)

    Article  Google Scholar 

  5. Buttner, W., Finke, W.: Children and infants postoperative pain scale. Paediatr. Anaesth. 10(3), 303–318 (2000)

    Article  Google Scholar 

  6. Chen, L., Ouyang, Y., Zeng, Y., Li, Y.: Dynamic facial expression recognition model based on BiLSTM-attention. In: 2020 15th International Conference on Computer Science & Education (ICCSE), pp. 828–832. IEEE (2020)

    Google Scholar 

  7. Craig, K.D., Prkachin, K.M., Grunau, R.E.: The facial expression of pain (2011)

    Google Scholar 

  8. Deng, J., Guo, J., Ververas, E., Kotsia, I., Zafeiriou, S.: Retinaface: single-shot multi-level face localisation in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5203–5212 (2020)

    Google Scholar 

  9. Economidou, E., Klimi, A., Vivilaki, V.G., Lykeridou, K.: Does music reduce postoperative pain? A review. Health Sci. J. 6(3), 365 (2012)

    Google Scholar 

  10. Fard, A.P., Mahoor, M.H.: Ad-Corre: adaptive correlation-based loss for facial expression recognition in the wild. IEEE Access 10, 26756–26768 (2022)

    Article  Google Scholar 

  11. Grunau, R.E., Holsti, L., Peters, J.W.: Long-term consequences of pain in human neonates. In: Seminars in Fetal and Neonatal Medicine, vol. 11, pp. 268–275. Elsevier (2006)

    Google Scholar 

  12. Hayes, M.: Experimental development of the graphics rating method. Physiol. Bull. 18, 98–99 (1921)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hicks, C.L., von Baeyer, C.L., Spafford, P.A., van Korlaar, I., Goodenough, B.: The faces pain scale-revised: toward a common metric in pediatric pain measurement. Pain 93(2), 173–183 (2001)

    Article  Google Scholar 

  15. Jensen, M.P., Karoly, P., Braver, S.: The measurement of clinical pain intensity: a comparison of six methods. Pain 27(1), 117–126 (1986)

    Article  Google Scholar 

  16. Kehlet, H., Jensen, T.S., Woolf, C.J.: Persistent postsurgical pain: risk factors and prevention. Lancet 367(9522), 1618–1625 (2006)

    Article  Google Scholar 

  17. Li, C., Pourtaherian, A., van Onzenoort, L., a Ten, W.T., de With, P.: Infant facial expression analysis: towards a real-time video monitoring system using R-CNN and HMM. IEEE J. Biomed. Health Inform. 25(5), 1429–1440 (2020)

    Google Scholar 

  18. Li, J., Jin, K., Zhou, D., Kubota, N., Ju, Z.: Attention mechanism-based CNN for facial expression recognition. Neurocomputing 411, 340–350 (2020)

    Article  Google Scholar 

  19. Li, S., Deng, W.: Deep facial expression recognition: a survey. IEEE Trans. Affect. Comput. (2020)

    Google Scholar 

  20. Li, X., Jiang, Y., Li, M., Yin, S.: Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans. Industr. Inform. 17(3), 1958–1967 (2020)

    Article  Google Scholar 

  21. Lucey, P., Cohn, J.F., Prkachin, K.M., Solomon, P.E., Chew, S., Matthews, I.: Painful monitoring: automatic pain monitoring using the UNBC-McMaster shoulder pain expression archive database. Image Vis. Comput. 30(3), 197–205 (2012)

    Article  Google Scholar 

  22. McGrath, P.J.: CHEOPS: a behavioral scale for rating postoperative pain in children. Adv. Pain Res. Ther. 9, 395 (1985)

    Google Scholar 

  23. Minaee, S., Minaei, M., Abdolrashidi, A.: Deep-emotion: facial expression recognition using attentional convolutional network. Sensors 21(9), 3046 (2021)

    Article  Google Scholar 

  24. Mitchell, A., Boss, B.J.: Adverse effects of pain on the nervous system of newborns and young children: a review of the literature. J. Neurosci. Nurs. 34(5), 228 (2002)

    Article  Google Scholar 

  25. Niu, Z., Zhong, G., Yu, H.: A review on the attention mechanism of deep learning. Neurocomputing 452, 48–62 (2021)

    Article  Google Scholar 

  26. Pawar, D., Garten, L.: Pain management in children. Guide to Pain Management in Low-Resource Settings 255 (2010)

    Google Scholar 

  27. Pecoraro, R., Basile, V., Bono, V., Gallo, S.: Local multi-head channel self-attention for facial expression recognition. arXiv preprint arXiv:2111.07224 (2021)

  28. Smeland, A.H., Twycross, A., Lundeberg, S., Rustøen, T.: Nurses’ knowledge, attitudes and clinical practice in pediatric postoperative pain management. Pain Manag. Nurs. 19(6), 585–598 (2018)

    Article  Google Scholar 

  29. Stevens, B.J., et al.: Pain assessment and intensity in hospitalized children in Canada. J. Pain 13(9), 857–865 (2012)

    Article  Google Scholar 

  30. Sun, Y., et al.: Automatic and continuous discomfort detection for premature infants in a NICU using video-based motion analysis. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5995–5999. IEEE (2019)

    Google Scholar 

  31. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  32. Voepel-Lewis, T., Shayevitz, J.R., Malviya, S.: The FLACC: a behavioral scale for scoring postoperative pain in young children. Pediatr. Nurs. 23(3), 293–7 (1997)

    Google Scholar 

  33. Wen, G., Chang, T., Li, H., Jiang, L.: Dynamic objectives learning for facial expression recognition. IEEE Trans. Multimedia 22(11), 2914–2925 (2020)

    Article  Google Scholar 

  34. Werner, P., Al-Hamadi, A., Niese, R., Walter, S., Gruss, S., Traue, H.C.: Automatic pain recognition from video and biomedical signals. In: 2014 22nd International Conference on Pattern Recognition, pp. 4582–4587. IEEE (2014)

    Google Scholar 

  35. Whaley, L., Wong, D.: Nursing Care of Infants and Children. CV Mosby Comp 3, 1070, St. Louis (1987)

    Google Scholar 

  36. Wong, D.L., Baker, C.M.: Pain in children: comparison of assessment scales. Pediatr. Nurs. 14(1), 9–17 (1988)

    Google Scholar 

  37. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  38. Zamzmi, G., Goldgof, D., Kasturi, R., Sun, Y.: Neonatal pain expression recognition using transfer learning. arXiv preprint arXiv:1807.01631 (2018)

  39. Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10076–10085 (2020)

    Google Scholar 

  40. Zheng, C., Fan, X., Wang, C., Qi, J.: GMAN: a graph multi-attention network for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 1234–1241 (2020)

    Google Scholar 

  41. Zieliński, J., Morawska-Kochman, M., Zatoński, T.: Pain assessment and management in children in the postoperative period: a review of the most commonly used postoperative pain assessment tools, new diagnostic methods and the latest guidelines for postoperative pain therapy in children. Adv. Clin. Exp. Med. 29(3), 365–374 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, W. et al. (2022). Detecting Temporal Pain Status of Postoperative Children from Facial Expression. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13458. Springer, Cham. https://doi.org/10.1007/978-3-031-13841-6_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13841-6_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13840-9

  • Online ISBN: 978-3-031-13841-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics