Abstract
A type synthesis method of six degrees of freedom (DOFs) parallel mechanism (PM) with decoupled translation and rotation (DTR) is proposed by analyzing the input and output characteristics of partially decoupled parallel mechanism (PDPM). Firstly, based on the requirements of Jacobian matrix of PDPM, the direct Jacobian matrix and inverse Jacobian matrix are constructed by the screw theory, so as to determine the actuation wrench screw (AWS) that represents the force or couple acting on the moving platform by the actuated twist screw (ATS) of the limb. According to the AWS and the connectivity, the ATS representing the driving pair and the non-actuated twist screw (NATS) representing the non-driving pair on the corresponding limb are obtained, and then the configuration of the limb structure screw system is completed. Finally, according to the limb combination principle of PDPM, six limbs are selected in turn to connect the moving platform and the fixed platform, and then a variety of six DOFs PMs with DTR are obtained. The six DOFs PM with DTR can be used as the main structure of the joint rehabilitation robot, which provides an idea to solve the problem that the rotation center of the robot joint is inconsistent with the actual physiological center of human joint. This kind of mechanism has the characteristics of compact structure and simple control that shows wide application prospects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lambert, P., Da Cruz, L., Bergeles, C.: Mobility of overconstrained parallel mechanisms with reconfigurable end-effectors. Mech. Mach. Theory 171, 104722 (2022)
Sharifzadeh, M., Arian, A., Salimi, A., et al.: An experimental study on the direct & indirect dynamic identification of an over-constrained 3-DOF decoupled parallel mechanism. Mech. Mach. Theory 116, 178–202 (2017)
Hess-Coelho, T.A.: Topological synthesis of a parallel wrist mechanism. J. Mech. Des. 128(1), 230–235 (2006)
Li, Q., Huang, Z., Hervé, J.M.: Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements. IEEE Trans. Robot. Autom. 20(2), 173–180 (2004)
He, J., Gao, F., Meng, X., et al.: Type synthesis for 4-DOF parallel press mechanism using GF set theory. Chin. J. Mech. Eng. 28(4), 851–859 (2015)
Yang, T., Liu, A., Shen, H., et al.: On the correctness and strictness of the position and orientation characteristic equation for topological structure design of robot mechanisms. J. Mech. Robot. 5(2), 021009 (2013)
Fan, C., Liu, H., Zhang, Y.: Type synthesis of 2T2R, 1T2R and 2R parallel mechanisms. Mech. Mach. Theory 61, 184–190 (2013)
Zhen, H., Liu, J., Zeng, D.: A general methodology for mobility analysis of mechanisms based on constraint screw theory. Sci. China Ser. E: Technol. Sci. 52(5), 1337–1347 (2009)
Zeng, D., Wang, H., Fan, M., et al.: Type synthesis of three degrees of freedom rotational generalized decoupling parallel mechanism. J. Mech. Eng. 53(03), 17–24 (2017)
Cao, Y., Chen, H., Qin, Y., et al.: Type synthesis of fully-decoupled three-rotational and one-translational parallel mechanisms. Int. J. Adv. Rob. Syst. 13, 79 (2016)
Xu, Y., Wang, B., Wang, Z., et al.: Investigations on the principle of full decoupling and type synthesis of 2R1T and 2R parallel mechanisms. Trans. Can. Soc. Mech. Eng. 43(2), 263–271 (2018)
Qu, S., Li, R., Ma, C., Li, H.: Type synthesis for lower-mobility decoupled parallel mechanism with redundant constraints. J. Mech. Sci. Technol. 35(6), 2657–2666 (2021). https://doi.org/10.1007/s12206-021-0536-x
Wang, S., Li, S., Li, H., et al.: Type synthesis of 3T2R decoupled hybrid mechanisms with large bearing capacity. J. Mech. Sci. Technol. 36(4), 2053–2067 (2022)
Kuo, C., Dai, J.: Structure synthesis of a class of parallel manipulators with fully decoupled projective motion. J. Mech. Robot. 13, 031011 (2021)
Zeng, D., Hou, Y., Lu, W., et al.: Type synthesis method for the translational decoupled parallel mechanism based on screw theory. J. Harbin Inst. Technol. 21(01), 84–91 (2014)
Zeng, D., Huang, Z.: Type synthesis of the rotational decoupled parallel mechanism based on screw theory. Sci. Chin. Technol. Sci. 54(4), 998–1004 (2011)
Huang, Z., Li, Q.: Type synthesis of symmetrical lower-mobility parallel mechanisms using the constraint-synthesis method. Int. J. Robot. Res. 22(1), 59–79 (2003)
Acknowledgement
This work was supported in part by the National Natural Science Foundation, China, under Grant 51905464, 51775473, in part by the Scientific Research Capacity Improvement Project of Key Developing Disciplines in Guangdong Province of China, under Grant 2021ZDJS084, in part by the National Key Research and Development Program, China, under Grant 2018YFB1307903, in part by the Dongguan Sci-tech Commissoner, under Grant 20211800500242, in part by the KEY Laboratory of Robotics and Intelligent Equipment of Guangdong Regular Institutions of Higher Education, under Grant 2017KSYS009, and in part by the Innovation Center of Robotics and Intelligent Equipment, China, under Grant KCYCXPT2017006, and in part by the Dongguan Social science and Technology Development (Key) Project, under Grant 20185071021602.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Y., Lu, W., Zeng, J., Cong, J., Hu, B., Zeng, D. (2022). Type Synthesis of Six Degrees of Freedom Parallel Mechanism with Decoupled Translation and Rotation. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13455. Springer, Cham. https://doi.org/10.1007/978-3-031-13844-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-13844-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13843-0
Online ISBN: 978-3-031-13844-7
eBook Packages: Computer ScienceComputer Science (R0)