Skip to main content

Agile Running Control for Bipedal Robot Based on 3D-SLIP Model Regulation in Task-Space

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Abstract

To achieve agile running of a biped robot, dynamic stability, joint coordination, and real-time ability are required. In this paper, a task-space-based controller framework is constructed with a reduced-order 3D-SLIP model. On the top layer, a 3D-SLIP model based planner is employed for center-of-mass trajectory planning. The planner built with optimization for table divided apex state, and a neural network is used to fit the optimized table for real-time planning. On the bottom layer, a task-space-based controller with full-body dynamics is utilized, which solves the quadratic programming for the optimized joint torque in real-time. A 12-DOF biped robot model with a point-foot is used for simulation verification. The simulation result show that stable running and single-cycle apex state change running can achieved with the framework.

This work was supported in part by the National Natural Science Foundation of China under Grant 52175011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuo, A.D., Donelan, J.M., Ruina, A.: Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exercise Sport Sci. Rev. 33(2), 88–97 (2005)

    Google Scholar 

  2. Kajita, S., Tani, K.: Study of dynamic biped locomotion on rugged terrain-derivation and application of the linear inverted pendulum mode. In: Proceedings. 1991 IEEE International Conference on Robotics and Automation, pp. 1405–1406. IEEE Computer Society (1991)

    Google Scholar 

  3. Kajita, S., et al.: Biped walking stabilization based on linear inverted pendulum tracking. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4489–4496. IEEE (2010)

    Google Scholar 

  4. Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 200–207. IEEE (2006)

    Google Scholar 

  5. Krause, M., Englsberger, J., Wieber, P.-B., Ott, C.: Stabilization of the capture point dynamics for bipedal walking based on model predictive control. IFAC Proc. Vol. 45(22), 165–171 (2012)

    Article  Google Scholar 

  6. Morisawa, M., Kajita, S., Kanehiro, F., Kaneko, K., Miura, K., Yokoi, K.: Balance control based on capture point error compensation for biped walking on uneven terrain. In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pp. 734–740. IEEE (2012)

    Google Scholar 

  7. Raibert, M.H., Benjamin Brown Jr, H., Chepponis, M., Koechling, J., Hodgins, J.K.: Dynamically stable legged locomotion. Technical report, Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab (1989)

    Google Scholar 

  8. Geyer, H., Seyfarth, A., Blickhan, R.: Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232(3), 315–328 (2005)

    Article  MathSciNet  Google Scholar 

  9. Albert, W., Geyer, H.: The 3-d spring-mass model reveals a time-based deadbeat control for highly robust running and steering in uncertain environments. IEEE Trans. Rob. 29(5), 1114–1124 (2013)

    Article  Google Scholar 

  10. Xin, S., Delhaisse, B., You, Y., Zhou, C., Shahbazi, M., Tsagarakis, N.: Neural-network-controlled spring mass template for humanoid running. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1725–1731. IEEE (2018)

    Google Scholar 

  11. Wensing, P.M., Orin, D.E.: Generation of dynamic humanoid behaviors through task-space control with conic optimization. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3103–3109. IEEE (2013)

    Google Scholar 

  12. Wiedebach, G., et al.: Walking on partial footholds including line contacts with the humanoid robot atlas. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages 1312–1319. IEEE (2016)

    Google Scholar 

  13. Baerlocher, P., Boulic, R.: Task-priority formulations for the kinematic control of highly redundant articulated structures. In: Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No. 98CH36190), vol. 1, pp. 323–329. IEEE, 1998

    Google Scholar 

  14. Kajita, S., e al.: Resolved momentum control: Humanoid motion planning based on the linear and angular momentum. In Proceedings 2003 ieee/rsj International Conference on Intelligent Robots and Systems (IROS 2003) (cat. no. 03ch37453), vol. 2, pp. 1644–1650. IEEE (2003)

    Google Scholar 

  15. Kuindersma, S., Permenter, F., Tedrake, R.: An efficiently solvable quadratic program for stabilizing dynamic locomotion. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2589–2594. IEEE (2014)

    Google Scholar 

  16. Koolen, T., Deits, R.: Julia for robotics: simulation and real-time control in a high-level programming language. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 604–611. IEEE (2019)

    Google Scholar 

  17. Featherstone, R.: Rigid body dynamics algorithms. Springer (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Li, Z., Gao, H., Shan, K., Li, J., Yu, H. (2022). Agile Running Control for Bipedal Robot Based on 3D-SLIP Model Regulation in Task-Space. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13455. Springer, Cham. https://doi.org/10.1007/978-3-031-13844-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13844-7_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13843-0

  • Online ISBN: 978-3-031-13844-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics