Skip to main content

A Novel Grasping Approach with Dynamic Annotation Mechanism

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13455))

Included in the following conference series:

  • 2502 Accesses

Abstract

The Grasping of unknown objects is a challenging but critical problem in the field of robotic research. However, existing studies only focus on the shape of objects and ignore the impact of the differences in robot systems which has a vital influence on the completion of grasping tasks. In this work, we present a novel grasping approach with a dynamic annotation mechanism to address the problem, which includes a grasping dataset and a grasping detection network. The dataset provides two annotations named basic and decent annotation respectively, and the former can be transformed to the latter according to mechanical parameters of antipodal grippers and absolute positioning accuracies of robots. So that we take the characters of the robot system into account. Meanwhile, a new evaluation metric is presented to provide reliable assessments for the predicted grasps. The proposed grasping detection network is a fully convolutional network that can generate robust grasps for robots. In addition, evaluations based on datasets and experiments on a real robot show the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yun, J., Moseson, S., Saxena, A.: Efficient grasping from RGBD images: learning using a new rectangle representation. In: 2011 IEEE International Conference on Robotics and Automation, pp. 3304–3311. IEEE, Shanghai, China (2011)

    Google Scholar 

  2. Mahler, J., et al.: Dex-net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. In: Robotics: Science and Systems, MIT Press, Massachusetts, USA (2017)

    Google Scholar 

  3. Fang, H.S., Wang, C., Gou M., Lu, C.: GraspNet-1Billion: a large-scale benchmark for general object grasping. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11441–11450. IEEE, Seattle, WA, USA (2020)

    Google Scholar 

  4. Morrison, D., Corke, P., Leitner, J.: Closing the loop for robotic grasping: a real-time, generative grasp synthesis approach. In: Robotics: Science and Systems. MIT Press, Pitts-burgh, Pennsylvania, USA (2018)

    Google Scholar 

  5. Kumra, S., Joshi, S., Sahin, F.: Antipodal robotic grasping using generative residual convolutional neural network. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 9626–9633. IEEE, Las Vegas, USA (2020)

    Google Scholar 

  6. Redmon, J., Angelova, A.: Real-time grasp detection using convolutional neural networks. In: 2015 IEEE International Conference on Robotics and Automation, pp. 1316–1322. IEEE, Seattle, WA, USA (2015)

    Google Scholar 

  7. Chu, F.J., Xu, R., Patricio, V.: Real-world multiobject, multigrasp detection. IEEE Robot. Autom. Lett. 3(4), 3355–3362 (2018)

    Article  Google Scholar 

  8. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2016)

    Article  Google Scholar 

  9. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2020)

    Article  Google Scholar 

  10. Huang, G., Liu, Z., Laurens, V., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2261–2269. IEEE, Honolulu, HI, USA (2017)

    Google Scholar 

  11. Le, Q.V., Kamm, D., Kara, A.F., Ng, A.Y.: Learning to grasp objects with multiple contact points. In: 2010 IEEE International Conference on Robotics and Automation, pp. 5062–5069. IEEE, Anchorage, AK, USA (2010)

    Google Scholar 

  12. Depierre, A., Dellandrea, E., Chen, L.: Jacquard: a large scale dataset for robotic grasp detection. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3511–3516. IEEE, Madrid, Spain (2018)

    Google Scholar 

  13. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository Computer Science. CoRR abs/1512.03012 (2015)

    Google Scholar 

  14. Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., Goldberg, K.: Dex-Net 3.0: computing robust vacuum suction grasp targets in point clouds using a new analytic model and deep learning. In: 2018 International Conference on Robotics and Automation, pp.5620–5627. IEEE, Brisbane, QLD, Australia (2018)

    Google Scholar 

  15. Cao, H., Fang, H.S., Liu, W., Lu, C.: SuctionNet-1Billion: a large-scale benchmark for suction grasping. IEEE Robot. Autom. Lett. 6(4), 8718–8725 (2021)

    Article  Google Scholar 

  16. Kumra, S., Kanan, C.: Robotic grasp detection using deep convolutional neural networks. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 769–776. IEEE, Vancouver, BC, Canada (2017)

    Google Scholar 

  17. Zhang, H., Lan, X., Bai, S., Zhou, X., Tian, Z., Zheng, N.: ROI-based robotic grasp detection for object overlapping scenes. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4768–4775. IEEE, Macau, China (2019)

    Google Scholar 

  18. Wu, G., Chen, W., Cheng, H., Zuo, W., Zhang, D., You, J.: Multi-object grasping detection with hierarchical feature fusion. IEEE Access 7, 43884–43894 (2019)

    Article  Google Scholar 

  19. Gou, M., Fang, H.S., Zhu, Z., Xu, S., Wang, C., Lu, C.: RGB matters: learning 7-DoF grasp poses on monocular RGBD images. In: 2021 IEEE International Conference on Robotics and Automation, pp. 13459–13466. IEEE, Xi’an, China (2021)

    Google Scholar 

  20. Pas, A.T., Gualtieri, M., Saenko, K., Platt, R.: Grasp pose detection in point clouds. Int. J. Robot. Res. 36(13–14), 1455–1473 (2017)

    Google Scholar 

  21. Liang, H., et al.: PointNetGPD: detecting grasp configurations from point sets. In: 2019 International Conference on Robotics and Automation, pp. 3629–3635. IEEE, Montreal, QC, Canada (2019)

    Google Scholar 

  22. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  23. Cao, J., Anwer, R.M., Cholakkal, H., Khan, F.S., Pang, Y., Shao, L.: SipMask: spatial information preservation for fast image and video instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_1

    Chapter  Google Scholar 

  24. Xie, E., Wang, W., Yu, Z., Anandkumar, A., A, J.M., Luo, P.: SegFormer: simple and effi-cient design for semantic segmentation with transformers. In: 35th Conference on Neural Information Processing Systems, pp. 12077–12090. MIT Press, Virtual Conference (2021)

    Google Scholar 

  25. Wu, S., Zhong, S., Liu, Y.: Deep residual learning for image steganalysis. Multi. Tools Appl. 77(9), 10437–10453 (2017). https://doi.org/10.1007/s11042-017-4440-4

    Article  Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE, Las Vegas, NV, USA (2016)

    Google Scholar 

  27. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1490.1556 (2014)

    Google Scholar 

  29. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: 31th AAAI Conference on Artificial Intelligence, pp. 4278–4284. AAAI Press, San Francisco California USA (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, S., Wang, B., Tao, J., Duan, Q., Liu, H. (2022). A Novel Grasping Approach with Dynamic Annotation Mechanism. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13455. Springer, Cham. https://doi.org/10.1007/978-3-031-13844-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13844-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13843-0

  • Online ISBN: 978-3-031-13844-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics