Abstract
Lower Limb Exoskeleton (LLE) has received considerable interests in strength augmentation, rehabilitation and walking assistance scenarios. For walking assistance, the LLE is expected to have the capability of recognizing the motor intention accurately. However, the methods for recognizing motor intention base on ElectroEncephaloGraphy (EEG) can not be directly used for recognizing the motor intention of human lower limbs, because it is difficult to distinguish left and right limbs. This paper proposes a human-exoskeleton interaction method based on EEG and ElectroMyoGrams (EMG)-Hierarchical Recognition for Motor Intention (HRMI). In which, the motor intention can be recognized by the EEG signal, and supplemented by EMG signals reflecting motor intention, the exoskeleton can distinguish the left and right limbs. An experimental platform is established to explore the performance of the proposed method in real life scenario. Ten healthy participants were recruited to perform a series of motions such standing, sitting, walking, and going up and down stairs. The results shown that the proposed method is successfully applied in real life scenarios and the recognition accuracy of standing and sitting than others.
This work was supported by the National Key Research and Development Program of China (No. 2018AAA0102504), the National Natural Science Foundation of China (NSFC) (No. 62003073, 62103084), and the Sichuan Science and Technology Program (No. 2021YFG0184, No. 2020YFSY0012, No. 2018GZDZX0037).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ambrosini, E., et al.: A robotic system with EMG-triggered functional electrical stimulation for restoring arm functions in stroke survivors. Neurorehabil. Neural Repair 35(4), 334–345 (2021)
Chen, Q., Cheng, H., Huang, R., Qiu, J., Chen, X.: Learning and planning of stair ascent for lower-limb exoskeleton systems. Ind. Robot: Int. J. Robot. Res. Appl. 46(3), 421–430 (2019)
Kazerooni, H., Chu, A., Steger, R.: That which does not stabilize, will only make us stronger. Int. J. Robot. Res. 26(1), 75–89 (2007)
Lee, S.W., Wilson, K.M., Lock, B.A., Kamper, D.G.: Subject-specific myoelectric pattern classification of functional hand movements for stroke survivors. IEEE Trans. Neural Syst. Rehabil. Eng. 19(5), 558–566 (2010)
Li, D., Zhang, Y.: Artificial neural network prediction of angle based on surface electromyography. In: 2011 International Conference on Control, Automation and Systems Engineering (CASE), pp. 1–3. IEEE (2011)
Li, H., et al.: EEG changes in time and time-frequency domain during movement preparation and execution in stroke patients. Front. Neurosci. 14, 827 (2020)
Merletti, R., Di Torino, P.: Standards for reporting EMG data. J. Electromyogr. Kinesiol. 9(1), 3–4 (1999)
Miao, M., Hu, W., Yin, H., Zhang, K.: Spatial-frequency feature learning and classification of motor imagery EEG based on deep convolution neural network. Comput. Math. Meth. Med. 2020 (2020)
Obayashi, S., Takahashi, R., Onuki, M.: Upper limb recovery in early acute phase stroke survivors by coupled EMG-triggered and cyclic neuromuscular electrical stimulation. NeuroRehabilitation 46(3), 417–422 (2020)
Penfield, W., Boldrey, E.: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60(4), 389–443 (1937)
Poboroniuc, M.S., Irimia, D.C.: FES & BCI based rehabilitation engineered equipment: clinical tests and perspectives. In: E-Health and Bioengineering Conference (EHB), pp. 77–80 (2017)
Radman, M., Chaibakhsh, A., Nariman-zadeh, N., He, H.: Generalized sequential forward selection method for channel selection in EEG signals for classification of left or right hand movement in BCI. In: International Conference on Computer and Knowledge Engineering (ICCKE), pp. 137–142 (2019)
Shi, D., Zhang, W., Zhang, W., Ding, X.: A review on lower limb rehabilitation exoskeleton robots. Chin. J. Mech. Eng. 32(1), 1–11 (2019)
Uusitalo, M.A., Ilmoniemi, R.J.: Signal-space projection method for separating MEG or EEG into components. Med. Biol. Eng. Compu. 35(2), 135–140 (1997)
Wang, J., Dai, Y., Kang, T., Si, X.: Research on human motion recognition based on lower limb electromyography (EMG) signals. In: IEEE International Conference on Electronics Technology (ICET), pp. 1234–1239 (2021)
Zhang, X., Tang, X., Wei, Z., Chen, X., Chen, X.: Model-based sensitivity analysis of EMG clustering index with respect to motor unit properties: investigating post-stroke FDI muscle. IEEE Trans. Neural Syst. Rehabil. Eng. 28(8), 1836–1845 (2020)
Zhang, X., Zhou, P.: High-density myoelectric pattern recognition toward improved stroke rehabilitation. IEEE Trans. Biomed. Eng. 59(6), 1649–1657 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Song, G., Huang, R., Guo, Y., Qiu, J., Cheng, H. (2022). An EEG-EMG-Based Motor Intention Recognition for Walking Assistive Exoskeletons. In: Liu, H., et al. Intelligent Robotics and Applications. ICIRA 2022. Lecture Notes in Computer Science(), vol 13455. Springer, Cham. https://doi.org/10.1007/978-3-031-13844-7_71
Download citation
DOI: https://doi.org/10.1007/978-3-031-13844-7_71
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-13843-0
Online ISBN: 978-3-031-13844-7
eBook Packages: Computer ScienceComputer Science (R0)