Skip to main content

An Improved NAMLab Image Segmentation Algorithm Based on the Earth Moving Distance and the CIEDE2000 Color Difference Formula

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13393))

Included in the following conference series:

Abstract

How to effectively segment an image into the non-overlapping sub-regions and make the segmentation results conform to the perception of the human vision have always been a key issue in the field of computer vision. Extensive studies have proved that the CIEDE2000 formula is the most consistent method with the color space distribution for objects recognized by human perspective. The representation system of the NAMLab algorithm ignored the differences of the pixels at different positions of a region, and produced information loss in the process of dimensionality reduction. Therefore, in this paper, we propose an improved NAMLab algorithm based on the Earth Moving Distance (EMD) and the CIEDE2000 color difference formula. First, a K-means clustering is performed on the Lab features of all the pixels in the region in order to obtain the region color feature histogram. Then, the CIEDE2000 formula is used to calculate the differences between the cluster centers of the adjacent region color histograms. Finally, the EMD algorithm is used to calculate the color similarity among regions. When compared with the state-of-the-art algorithms, the experimental results presented in this paper demonstrate that the proposed algorithm has better segmentation performance, and the obtained segmentation results are more in line with the perception of the human vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3523–3542 (2022). https://doi.org/10.1109/TPAMI.2021.3059968

    Article  Google Scholar 

  2. Pandey, R., Lalchhanhima, R.: Segmentation techniques for complex image: review. Int. Conf. Comput. Perform. Eval. (ComPE) 2020, 804–808 (2020)

    Google Scholar 

  3. Singh, V., Gupta, S., Saini, S.: A methodological survey of image segmentation using soft computing techniques. Int. Conf. Adv. Comput. Eng. App. 2015, 419–422 (2015)

    Google Scholar 

  4. Sevak, J.S., Kapadia, A.D., Chavda, J.B., Shah, A., Rahevar, M.: Survey on semantic image segmentation techniques. Int. Conf. Intell. Sustain. Syst. (ICISS) 2017, 306–313 (2017)

    Google Scholar 

  5. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging. 39, 1856–1867 (2020)

    Article  Google Scholar 

  6. Hu, Q., et al.: RandLA-Net: efficient semantic segmentation of large-scale point clouds. IEEE/CVF Conf. Comput. Vision Pattern Recogn. (CVPR) 2020, 11105–11114 (2020)

    Google Scholar 

  7. Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1483–1498 (2021)

    Article  Google Scholar 

  8. Fan, D., et al.: Inf-Net: automatic COVID-19 lung infection segmentation from CT images. IEEE Trans. Med. Imaging. 39, 2626–2637 (2020)

    Article  Google Scholar 

  9. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651 (2017)

    Article  Google Scholar 

  10. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  11. Davis, L.S.: A survey of edge detection techniques. Comput. Graph. Image Process. 4, 248–270 (1975)

    Article  Google Scholar 

  12. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16, 641–647 (1994)

    Article  Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Neural Inf. Process. Syst. 25, 1–9 (2012). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint: arXiv:1409.1556

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. IEEE Conf. Comput. Vision Pattern Recogn. (CVPR) 2016, 770–778 (2016)

    Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  17. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv:1511.07122 (2015)

  18. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-eecoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2015)

    Article  Google Scholar 

  19. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs (2014). arXiv preprint arXiv:1412.7062

  20. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834–848 (2018)

    Article  Google Scholar 

  21. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking Atrous convolution for semantic image segmentation (2014). arXiv preprint: arXiv:1412.7062

  22. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2011)

    Article  Google Scholar 

  23. Syu, J., Wang, S., Wang, L.: Hierarchical image segmentation based on iterative contraction and merging. IEEE Trans. Image Process. 26, 2246–2260 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zheng, Y., Yang, B., Sarem, M.: Hierarchical image segmentation based on nonsymmetry and anti-packing pattern representation model. IEEE Trans. Image Process. 30, 2408–2421 (2021)

    Article  Google Scholar 

  25. Gomez-Polo, C., Munoz, M.P., Luengo, M.C.L., Vicente, P., Galindo, P., Casado, A.: Comparison of the CIElab and CIEDE2000 color difference formulas. J. Prosthet. Dent. 115, 65–70 (2016)

    Article  Google Scholar 

  26. Luo, M.R., Cui, G., Rigg, B.: The development of the CIE 2000 colour-difference formula: CIEDE 2000. Color. Res. Appl. 26, 340–350 (2001)

    Article  Google Scholar 

  27. Zheng, Y., Yu, Z., You, J., Sarem, M.: A novel gray image representation using overlapping rectangular NAM and extended shading approach. J. Visual Commun. Image Represent. 23, 972–983 (2012)

    Article  Google Scholar 

  28. Liang, H., Zhao, S., Chen, C., Sarem, M.: The NAMlet transform: a novel image sparse representation method based on non-symmetry and anti-packing model. Signal Process. 137, 251–263 (2017)

    Article  Google Scholar 

  29. Zheng, Y., Sarem, M.: A fast region segmentation algorithm on compressed gray images using non-symmetry and anti-packing model and extended shading representation. J. Vis. Commun. Image Represent. 34, 153–166 (2016)

    Article  Google Scholar 

  30. Chou, C., Liu, K.: Perceptually optimized color image watermarking scheme based on CIEDE2000 color difference equation. In: Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 526–529 (2004)

    Google Scholar 

  31. Jie, C., Shan, S., Chu, H.: WLD: a robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1705–1720 (2010)

    Article  Google Scholar 

  32. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple segmentations. In: Proceedings of the British Machine Vision Conference, U.K., University of Warwick, pp. 55.1–55.10 (2007)

    Google Scholar 

  33. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

  34. Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and semantically consistent regions. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1–8 (2009)

    Google Scholar 

  35. Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.): Computer Vision – ECCV 2012. LNCS, Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3

    Book  Google Scholar 

Download references

Acknowledgment

This work is supported by the Natural Science Foundation of Guangdong Province of China under Grant No. 2017A030313349 and No. 2021A1515011517, the National Natural Science Foundation of China under Grant No. 61300134, and the National Undergraduate Innovative and Entrepreneurial Training Program under Grant No. 202110561070 and No. 202110561066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunping Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Y. et al. (2022). An Improved NAMLab Image Segmentation Algorithm Based on the Earth Moving Distance and the CIEDE2000 Color Difference Formula. In: Huang, DS., Jo, KH., Jing, J., Premaratne, P., Bevilacqua, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2022. Lecture Notes in Computer Science, vol 13393. Springer, Cham. https://doi.org/10.1007/978-3-031-13870-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13870-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13869-0

  • Online ISBN: 978-3-031-13870-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics