Skip to main content

Average Power Based EEG Channel Selection Method for Emotion Recognition

  • Conference paper
  • First Online:
Proceedings of the ICR’22 International Conference on Innovations in Computing Research (ICR 2022)

Abstract

Emotion can be defined as the neurophysiological changes people experience due to significant internal or external occasions. This work applies a channel selection algorithm based on average band power on the preprocessed EEG data frequency bands from the DEAP dataset to select the top 10 EEG channels. DWT is performed to get detail coefficients as features, and a statistical parameter RSS is used to reduce the dimension of the features for both selected and all 32 EEG channels. Finally, valence and arousal are classified using different classification algorithms (like Random Forest, Extra Trees, Naive Bayes, and MLP) to make a performance comparison between selected EEG channels and all EEG channels. The highest test accuracy, 66.8%, was retrieved from the Random Forest (RF) classifier for valence classification. Likewise, Random Forest (RF) and Extra Trees (ET) both achieved the highest test accuracy of 64.84% for arousal classification, which validates the efficiency of the proposed channel reduction technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Petrushin, V.: Emotion in speech: recognition and application to call centers. In: Proceedings of Artificial Neural Networks in Engineering, vol. 710, p. 22, November 1999

    Google Scholar 

  2. Anderson, K., McOwan, P.W.: A real-time automated system for the recognition of human facial expressions. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(1), 96–105 (2006)

    Google Scholar 

  3. Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1424–1445 (2000)

    Article  Google Scholar 

  4. Yin, Z., Zhao, M., Wang, Y., Yang, J., Zhang, J.: Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput. Methods Programs Biomed. 140, 93–110 (2017)

    Article  Google Scholar 

  5. Wang, X.W., Nie, D., Lu, B.L.: Emotional state classification from EEG data using machine learning approach. Neurocomputing 129, 94–106 (2014)

    Article  Google Scholar 

  6. Petrantonakis, P.C., Hadjileontiadis, L.J.: A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition. IEEE Trans. Inf. Technol. Biomed. 15(5), 737–746 (2011)

    Article  Google Scholar 

  7. Li, X., Hu, B., Zhu, T., Yan, J., Zheng, F.: Towards affective learning with an EEG feedback approach. In: Proceedings of the First ACM International Workshop on Multimedia Technologies for Distance Learning, pp. 33–38, October 2009

    Google Scholar 

  8. Torres-Valencia, C.A., Garcia-Arias, H.F., Lopez, M.A.A., Orozco-Gutiérrez, A.A.: Comparative analysis of physiological signals and electroencephalogram (EEG) for multimodal emotion recognition using generative models. In: 2014 XIX Symposium on Image, Signal Processing and Artificial Vision, pp. 1–5. IEEE, September 2014

    Google Scholar 

  9. Koelstra, S., et al.: Deap: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2011)

    Article  Google Scholar 

  10. Qing, C., Qiao, R., Xu, X., Cheng, Y.: Interpretable emotion recognition using EEG signals. IEEE Access 7, 94160–94170 (2019)

    Article  Google Scholar 

  11. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)

    Article  Google Scholar 

  12. Murugappan, M., Juhari, M.R.B.M., Nagarajan, R., Yaacob, S.: An Investigation on visual and audiovisual stimulus based emotion recognition using EEG. Int. J. Med. Eng. Inform. 1(3), 342 (2009)

    Google Scholar 

  13. Doma, V., Pirouz, M.: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals. J. Big Data 7(1), 1–21 (2020). https://doi.org/10.1186/s40537-020-00289-7

    Article  Google Scholar 

  14. Baratloo, A., Hosseini, M., Negida, A., El Ashal, G.: Part 1: simple definition and calculation of accuracy, sensitivity and specificity. Emergency (Tehran, Iran) 3(2), 48–49 (2015)

    Google Scholar 

  15. Wioleta, S.: Using physiological signals for emotion recognition. In: 2013 6th International Conference on Human System Interactions (HSI), pp. 556- 561. IEEE, June 2013

    Google Scholar 

  16. Koelstra, S.: DEAP: A Dataset for Emotion Analysis using Physiological and Audiovisual Signals (2020). http://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html. Accessed 6 Oct 2020

  17. Chen, J.X., Zhang, P.W., Mao, Z.J., Huang, Y.F., Jiang, D.M., Zhang, Y.N.: Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks. IEEE Access 7, 44317–44328 (2019). https://doi.org/10.1109/ACCESS.2019.2908285

    Article  Google Scholar 

  18. Torres, E.P., Torres, E.A., Hernández-Álvarez, M., Yoo, S.G.: EEG-based BCI emotion recognition: a survey. Sensors 20(18), 5083 (2020). https://doi.org/10.3390/s20185083

    Article  Google Scholar 

  19. Khosrowbadi, R., Quek, H.C., Wahab, A., Ang, K.K.: EEG based emotion recognition using self-organizing map for boundary detection. In: International Conference on Pattern Recognition, pp. 4242–4245 (2010)

    Google Scholar 

  20. Jirayucharoensak, S., Panngum, S., Israsena, P.: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci. World J. 2014, 627892 (2014). https://doi.org/10.1155/2014/627892

    Article  Google Scholar 

  21. Pandey, P., Seeja, K.R.: Emotional state recognition with EEG signals using subject independent approach. In: Mishra, D.K., Yang, X.-S., Unal, A. (eds.) Data Science and Big Data Analytics. LNDECT, vol. 16, pp. 117–124. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-7641-1_10

    Chapter  Google Scholar 

  22. Özerdem, M.S., Polat, H.: Emotion recognition based on EEG features in movie clips with channel selection. Brain Inform. 4(4), 241–252 (2017). https://doi.org/10.1007/s40708-017-0069-3

    Article  Google Scholar 

  23. Zhang, J., Chen, M., Zhao, S., Hu, S., Shi, Z., Cao, Y.: ReliefF-based EEG sensor selection methods for emotion recognition. Sensors 16(10), 1558 (2016). https://doi.org/10.3390/s16101558

    Article  Google Scholar 

  24. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods (2020). https://doi.org/10.1038/s41592-019-0686-2

  25. Vecchiato, G., et al.: EEG analysis of the brain activity during the observation of commercial, political, or public service announcements. Comput. Intell. Neurosci. 2010 (2010)

    Google Scholar 

  26. Wang, J., Wang, M.: Review of the emotional feature extraction and classification using EEG signals. Cogn. Robot. 1, 29–40 (2021). https://doi.org/10.1016/j.cogr.2021.04.001

    Article  Google Scholar 

  27. Pane, E.S., Wibawa, A.D., Pumomo, M.H.: Channel selection of EEG emotion recognition using stepwise discriminant analysis. In: 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), pp. 14–19. IEEE, November (2018)

    Google Scholar 

  28. Pandey, P., Seeja, K.R.: Subject independent emotion recognition from EEG using VMD and deep learning. J. King Saud Univ.-Comput. Inf. Sci. (2019)

    Google Scholar 

  29. Yan, J., Chen, S., Deng, S.: A EEG-based emotion recognition model with rhythm and time characteristics. Brain Inform. 6(1), 1–8 (2019). https://doi.org/10.1186/s40708-019-0100-y

    Article  Google Scholar 

  30. Kumar, N., Khaund, K., Hazarika, S.M.: Bispectral analysis of EEG for emotion recognition. Procedia Comput. Sci. 84, 31–35 (2016)

    Article  Google Scholar 

  31. Morley, A., Hill, L., Kaditis, A.G.: 10–20 System EEG Placement. European Respiratory Society, European Respiratory Society (2016)

    Google Scholar 

  32. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Tasnim Mim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahman, M.S. et al. (2022). Average Power Based EEG Channel Selection Method for Emotion Recognition. In: Daimi, K., Al Sadoon, A. (eds) Proceedings of the ICR’22 International Conference on Innovations in Computing Research. ICR 2022. Advances in Intelligent Systems and Computing, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-031-14054-9_26

Download citation

Publish with us

Policies and ethics