Abstract
Emotion can be defined as the neurophysiological changes people experience due to significant internal or external occasions. This work applies a channel selection algorithm based on average band power on the preprocessed EEG data frequency bands from the DEAP dataset to select the top 10 EEG channels. DWT is performed to get detail coefficients as features, and a statistical parameter RSS is used to reduce the dimension of the features for both selected and all 32 EEG channels. Finally, valence and arousal are classified using different classification algorithms (like Random Forest, Extra Trees, Naive Bayes, and MLP) to make a performance comparison between selected EEG channels and all EEG channels. The highest test accuracy, 66.8%, was retrieved from the Random Forest (RF) classifier for valence classification. Likewise, Random Forest (RF) and Extra Trees (ET) both achieved the highest test accuracy of 64.84% for arousal classification, which validates the efficiency of the proposed channel reduction technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Petrushin, V.: Emotion in speech: recognition and application to call centers. In: Proceedings of Artificial Neural Networks in Engineering, vol. 710, p. 22, November 1999
Anderson, K., McOwan, P.W.: A real-time automated system for the recognition of human facial expressions. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(1), 96–105 (2006)
Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1424–1445 (2000)
Yin, Z., Zhao, M., Wang, Y., Yang, J., Zhang, J.: Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput. Methods Programs Biomed. 140, 93–110 (2017)
Wang, X.W., Nie, D., Lu, B.L.: Emotional state classification from EEG data using machine learning approach. Neurocomputing 129, 94–106 (2014)
Petrantonakis, P.C., Hadjileontiadis, L.J.: A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition. IEEE Trans. Inf. Technol. Biomed. 15(5), 737–746 (2011)
Li, X., Hu, B., Zhu, T., Yan, J., Zheng, F.: Towards affective learning with an EEG feedback approach. In: Proceedings of the First ACM International Workshop on Multimedia Technologies for Distance Learning, pp. 33–38, October 2009
Torres-Valencia, C.A., Garcia-Arias, H.F., Lopez, M.A.A., Orozco-Gutiérrez, A.A.: Comparative analysis of physiological signals and electroencephalogram (EEG) for multimodal emotion recognition using generative models. In: 2014 XIX Symposium on Image, Signal Processing and Artificial Vision, pp. 1–5. IEEE, September 2014
Koelstra, S., et al.: Deap: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2011)
Qing, C., Qiao, R., Xu, X., Cheng, Y.: Interpretable emotion recognition using EEG signals. IEEE Access 7, 94160–94170 (2019)
Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)
Murugappan, M., Juhari, M.R.B.M., Nagarajan, R., Yaacob, S.: An Investigation on visual and audiovisual stimulus based emotion recognition using EEG. Int. J. Med. Eng. Inform. 1(3), 342 (2009)
Doma, V., Pirouz, M.: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals. J. Big Data 7(1), 1–21 (2020). https://doi.org/10.1186/s40537-020-00289-7
Baratloo, A., Hosseini, M., Negida, A., El Ashal, G.: Part 1: simple definition and calculation of accuracy, sensitivity and specificity. Emergency (Tehran, Iran) 3(2), 48–49 (2015)
Wioleta, S.: Using physiological signals for emotion recognition. In: 2013 6th International Conference on Human System Interactions (HSI), pp. 556- 561. IEEE, June 2013
Koelstra, S.: DEAP: A Dataset for Emotion Analysis using Physiological and Audiovisual Signals (2020). http://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html. Accessed 6 Oct 2020
Chen, J.X., Zhang, P.W., Mao, Z.J., Huang, Y.F., Jiang, D.M., Zhang, Y.N.: Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks. IEEE Access 7, 44317–44328 (2019). https://doi.org/10.1109/ACCESS.2019.2908285
Torres, E.P., Torres, E.A., Hernández-Álvarez, M., Yoo, S.G.: EEG-based BCI emotion recognition: a survey. Sensors 20(18), 5083 (2020). https://doi.org/10.3390/s20185083
Khosrowbadi, R., Quek, H.C., Wahab, A., Ang, K.K.: EEG based emotion recognition using self-organizing map for boundary detection. In: International Conference on Pattern Recognition, pp. 4242–4245 (2010)
Jirayucharoensak, S., Panngum, S., Israsena, P.: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci. World J. 2014, 627892 (2014). https://doi.org/10.1155/2014/627892
Pandey, P., Seeja, K.R.: Emotional state recognition with EEG signals using subject independent approach. In: Mishra, D.K., Yang, X.-S., Unal, A. (eds.) Data Science and Big Data Analytics. LNDECT, vol. 16, pp. 117–124. Springer, Singapore (2019). https://doi.org/10.1007/978-981-10-7641-1_10
Özerdem, M.S., Polat, H.: Emotion recognition based on EEG features in movie clips with channel selection. Brain Inform. 4(4), 241–252 (2017). https://doi.org/10.1007/s40708-017-0069-3
Zhang, J., Chen, M., Zhao, S., Hu, S., Shi, Z., Cao, Y.: ReliefF-based EEG sensor selection methods for emotion recognition. Sensors 16(10), 1558 (2016). https://doi.org/10.3390/s16101558
Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods (2020). https://doi.org/10.1038/s41592-019-0686-2
Vecchiato, G., et al.: EEG analysis of the brain activity during the observation of commercial, political, or public service announcements. Comput. Intell. Neurosci. 2010 (2010)
Wang, J., Wang, M.: Review of the emotional feature extraction and classification using EEG signals. Cogn. Robot. 1, 29–40 (2021). https://doi.org/10.1016/j.cogr.2021.04.001
Pane, E.S., Wibawa, A.D., Pumomo, M.H.: Channel selection of EEG emotion recognition using stepwise discriminant analysis. In: 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), pp. 14–19. IEEE, November (2018)
Pandey, P., Seeja, K.R.: Subject independent emotion recognition from EEG using VMD and deep learning. J. King Saud Univ.-Comput. Inf. Sci. (2019)
Yan, J., Chen, S., Deng, S.: A EEG-based emotion recognition model with rhythm and time characteristics. Brain Inform. 6(1), 1–8 (2019). https://doi.org/10.1186/s40708-019-0100-y
Kumar, N., Khaund, K., Hazarika, S.M.: Bispectral analysis of EEG for emotion recognition. Procedia Comput. Sci. 84, 31–35 (2016)
Morley, A., Hill, L., Kaditis, A.G.: 10–20 System EEG Placement. European Respiratory Society, European Respiratory Society (2016)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rahman, M.S. et al. (2022). Average Power Based EEG Channel Selection Method for Emotion Recognition. In: Daimi, K., Al Sadoon, A. (eds) Proceedings of the ICR’22 International Conference on Innovations in Computing Research. ICR 2022. Advances in Intelligent Systems and Computing, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-031-14054-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-14054-9_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14053-2
Online ISBN: 978-3-031-14054-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)