Skip to main content

Classification of Encrypted Data Using Deep Learning and Legendre Polynomials

  • Conference paper
  • First Online:
Proceedings of the ICR’22 International Conference on Innovations in Computing Research (ICR 2022)

Abstract

Problems involving the classification of sensitive cloud data, such as medical or financial records, can be solved using a convolutional neural network (CNN) approach. Data privacy and security, however, require extra care. Homomorphic encryption is a potential security solution to allow CNNs to classify cypher data. The convolution layer, for example, is a computation that can be fully homomorphically evaluated; however, non-linear functions, such as the activation layer, cannot be fully homomorphically assessed since they do not follow a linear pattern. This paper uses low-degree polynomials to approximate these non-linear functions. We compare various polynomial approximation approaches to achieve the optimal approximation function for activation functions such as Relu. Finally, we use a proposed CNN and the MNIST dataset to demonstrate the effectiveness of our approximation functions. The resulting proposed CNN achieved a 99.80% accuracy rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chou, E., Beal, J., Levy, D., Yeung, S., Haque, A., Fei-Fei, L.: Faster CryptoNets: leveraging sparsity for real-world encrypted inference. arXiv, November 2018. https://arxiv.org/abs/1811.09953. Accessed 14 Nov 2021

  2. Denning, D.E.R.: Cryptography and data security (1982)

    Google Scholar 

  3. Yassein, H.R., Al-Saidi, N.M.G., Farhan, A.K.: A new NTRU cryptosystem outperforms three highly secured NTRU-analog systems through an innovational algebraic structure. J. Discret. Math. Sci. Cryptogr. (2020). https://doi.org/10.1080/09720529.2020.1741218

  4. Kadhim, A.F., Kamal, Z.A.: Generating dynamic S-box based on particle swarm optimization and chaos theory for AES. Iraqi J. Sci. 59(3), 1733–1745 (2018). https://doi.org/10.24996/IJS.2018.59.3C.18

    Article  Google Scholar 

  5. Alhudhaif, A., Ahmad, M., Alkhayyat, A., Tsafack, N., Farhan, A.K., Ahmed, R.: Block cipher nonlinear confusion components based on new 5-D hyperchaotic system. IEEE Access 9, 87686–87696 (2021). https://doi.org/10.1109/ACCESS.2021.3090163

    Article  Google Scholar 

  6. Zahid, A.H., et al.: Efficient dynamic S-box generation using linear trigonometric transformation for security applications. IEEE Access 9, 98460–98475 (2021). https://doi.org/10.1109/ACCESS.2021.3095618

    Article  Google Scholar 

  7. Podschwadt, R., Takagi, D., Hu, P.: SoK: privacy-preserving deep learning with homomorphic encryption (2021). http://arxiv.org/abs/2112.12855

  8. Yao, A.C.C.: How to generate and exchange secrets. In: Annual Symposium Foundations of Computer Science, no. 1, pp. 162–167 (1986). https://doi.org/10.1109/sfcs.1986.25

  9. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/10.1145/359168.359176

    Article  MathSciNet  MATH  Google Scholar 

  10. Gentry, C.S.: Fully homomorphic encryption from approximate ideal lattices. Ruan Jian Xue Bao J. Softw. 26(10), 2696–2719 (2015). https://doi.org/10.13328/j.cnki.Jos.004808

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_14

    Chapter  Google Scholar 

  12. McKeen, F., et al.: Innovative instructions and software model for isolated execution. In: Proceeding of the 2nd International Workshop HASP (2013). https://doi.org/10.1145/2487726.2488368

  13. Obla, S., Gong, X., Aloufi, A., Hu, P., Takabi, D.: Effective activation functions for homomorphic evaluation of deep neural networks. IEEE Access 8, 153098–153112 (2020). https://doi.org/10.1109/ACCESS.2020.3017436

    Article  Google Scholar 

  14. Dowlin, N., et al.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy - Microsoft research. Microsoft Res. TechReport 48, 1–12 (2016). http://proceedings.mlr.press/v48/gilad-bachrach16.pdf. http://research.microsoft.com/apps/pubs/?id=260989

  15. Chabanne, H.: Privacy-preserving classification on deep neural network. Med. Today 4(7), 59–64 (2017)

    Google Scholar 

  16. Hesamifard, E., Takagi, H., Ghasemi, M.: CryptoDL: deep neural networks over encrypted data, pp. 1–21 (2017). http://arxiv.org/abs/1711.05189

  17. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_17

    Chapter  Google Scholar 

  18. Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29(6), 141–142 (2012). https://doi.org/10.1109/MSP.2012.2211477

    Article  Google Scholar 

  19. Ohn, I., Kim, Y.: Smooth function approximation by deep neural networks with general activation functions. Entropy 21(7), 1–24 (2019). https://doi.org/10.3390/e21070627

    Article  MathSciNet  Google Scholar 

  20. Maennel, H., Bousquet, O., Gelly, S.: Gradient descent quantizes ReLU network features, arXiv, vol. abs/1803.0 (2018)

    Google Scholar 

  21. Harrou, F., Zeroual, A., Sun, Y.: Calcuas. In: Proceedings of the American Control Conference, vol. 2018-June, pp. 604–609 (2018). https://doi.org/10.23919/ACC.2018.8431387

  22. Obla, S., Gong, X., Aloufi, A., Hu, P., Takabi, D.: Effective activation functions for homomorphic evaluation of deep neural networks (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad M. Alsaedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alsaedi, E.M., Farhan, A.K., Falah, M.W., Oleiwi, B.K. (2022). Classification of Encrypted Data Using Deep Learning and Legendre Polynomials. In: Daimi, K., Al Sadoon, A. (eds) Proceedings of the ICR’22 International Conference on Innovations in Computing Research. ICR 2022. Advances in Intelligent Systems and Computing, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-031-14054-9_31

Download citation

Publish with us

Policies and ethics