Skip to main content

A Blockchain Based Methodology for Power Grid Control Systems

  • Conference paper
  • First Online:
Proceedings of the ICR’22 International Conference on Innovations in Computing Research (ICR 2022)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1431))

Included in the following conference series:

Abstract

The increasing shift towards renewable energy has increased the complexity of power grid systems. Generally, power management is done through a centralized control architecture where a single entity governs the entire network. Centralized architecture is simple to manage but is not fault tolerant. If the centralized entity fails, the entire system will be impaired. Despite decentralized architecture’s tolerance to the single point of failure, it highly affects the system’s efficiency. A fragmented decentralized power grid lacks sufficient knowledge for optimal load distribution. In this study, we suggest the use of a distributed blockchain-based approach for power grid management. This novel approach overcomes both centralized and decentralized architectures’ vulnerabilities. It offers a solution to the centralized dependent single point of failure while maintaining a secure data flow across the grid for optimal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhodes, A., Skea, J., Hannon, M.: The global surge in energy innovation. Energies 7, 5601–5623 (2014)

    Article  Google Scholar 

  2. Camacho, E.F., Samad, T., Garcia-Sanz, M., Hiskens, I.: Control for renewable energy and smart grids. Impact Control Technol. Control Syst. Soc. 4, 69–88 (2011)

    Google Scholar 

  3. Dib, M., Abdallah, R., Dib, O.: Optimization approach for the aggregation of flexible consumers. Electronics 11(4), 628 (2022)

    Article  Google Scholar 

  4. Taft, J., De Martini, P., Geiger, R.: Ultra large-scale power system control and coordination architecture. Pacific Northwest National Laboratory (PNNL) (2014)

    Google Scholar 

  5. Yamashita, D.Y., Vechiu, I., Gaubert, J.-P.: A review of hierarchical control for building microgrids. Renew. Sustain. Energy Rev. 118, 109523 (2020)

    Article  Google Scholar 

  6. Baghaee, H.R., Mirsalim, M., Gharehpetian, G.B., Talebi, H.A.: Unbalanced harmonic power sharing and voltage compensation of microgrids using radial basis function neural network-based harmonic power-flow calculations for distributed and decentralised control structures. IET Gener. Transm. Distrib. 12(7), 1518–1530 (2018)

    Article  Google Scholar 

  7. Kermani, M., Carnì, D.L., Rotondo, S., Paolillo, A., Manzo, F., Martirano, L.: A nearly zero-energy microgrid testbed laboratory: centralized control strategy based on scada system. Energies 13(8), 2106 (2020)

    Article  Google Scholar 

  8. Elbez, G., Keller, H.B., Hagenmeyer, V.: A new classification of attacks against the cyber-physical security of smart grids. In: Proceedings of the 13th International Conference on Availability, Reliability and Security, pp. 1–6 (2018)

    Google Scholar 

  9. Sabri, Y., El Kamoun, N., Lakrami, F.: A survey: centralized, decentralized, and distributed control scheme in smart grid systems. In: 2019 7th Mediterranean Congress of Telecommunications (CMT), pp. 1–11 (2019)

    Google Scholar 

  10. Feng, X., Shekhar, A., Yang, F., Hebner, R.E., Bauer, P.: Comparison of hierarchical control and distributed control for microgrid. Electr. Power Compon. Syst. 45(10), 1043–1056 (2017)

    Article  Google Scholar 

  11. Elmouatamid, A., Ouladsine, R., Bakhouya, M., El Kamoun, N., Khaidar, M., Zine-Dine, K.: Review of control and energy management approaches in micro-grid systems. Energies 14(1), 168 (2021)

    Article  Google Scholar 

  12. https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=351-55-09

  13. Elmouatamid, A., Naitmalek, Y., Ouladsine, R., Bakhouya, M., Khaidar, M., Zine-Dine, K.: A microgrid system infrastructure implementing IoT/Big-Data technologies for efficient energy management in buildings. In: Advanced Technologies for Solar Photovoltaics Energy Systems, pp. 571–600 (2021). https://doi.org/10.1007/978-3-030-64565-6_20

  14. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. 21260 (2008)

    Google Scholar 

  15. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

    Google Scholar 

  16. Gainsbury, S., Blaszczynski, A.: How blockchain and cryptocurrency technology could revolutionize online gambling. Gaming Law Rev. 21, 482–492 (2017)

    Article  Google Scholar 

  17. Cha, S., Baek, S., Kim, S.: Blockchain based sensitive data management by using key escrow encryption system from the perspective of supply chain. IEEE Access 8, 154269–154280 (2020)

    Article  Google Scholar 

  18. Foroglou, G., Tsilidou, A.-L.: Further applications of the blockchain. In: 12th Student Conference on Managerial Science And Technology, vol. 9, (2015)

    Google Scholar 

  19. Swan, M.: Blockchain: Blueprint for a New Economy. O’Reilly Media Inc, Sebastopol (2015)

    Google Scholar 

  20. Tasatanattakool, P., Techapanupreeda, C.: Blockchain: challenges and applications. In: 2018 International Conference on Information Networking (ICOIN), pp. 473–475 (2018)

    Google Scholar 

  21. Gürcan, Ö., Agenis-Nevers, M., Batany, Y.-M., Elmtiri, M., Fevre, F.L., Tucci-Piergiovanni, S.: An industrial prototype of trusted energy performance contracts using blockchain technologies. In: 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), IEEE, pp. 1336–1343 (2018)

    Google Scholar 

  22. Brousmichc, K.-L., Anoaica, A., Dib, O., Abdellatif, T., Deleuze, G.: Blockchain energy market place evaluation: an agent-based approach. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 321–327. IEEE (2018)

    Google Scholar 

  23. Haring, T.W., Mathieu, J.L., Andersson, G.: Comparing centralized and decentralized contract design enabling direct load control for reserves. IEEE Trans. Power Syst. 31, 2044–2054 (2015)

    Article  Google Scholar 

  24. Aştefanoaei, L., Chambart, P., Del Pozzo, A., Rieutord, T., Tucci, S., Zălinescu, E.: Tenderbake – a solution to dynamic repeated consensus for blockchains, In: International Symposium on Foundations and Applications of Blockchain (FAB) (2021)

    Google Scholar 

  25. Amoussou-Guenou, Y., Del Pozzo, A., Potop-Butucaru, M., Tucci-Piergiovanni, S.: Correctness of tendermint-core blockchains. In: 22nd International Conference on Principles of Distributed Systems (OPODIS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  26. Butterin, V.: On public and private blockchains (2015). https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/. Accessed 28 Feb 2022

  27. https://www.en.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0064986

  28. Foti, M., Vavalis, M.: What blockchain can do for power grids? Blockchain: Res. Appl. 2(1), 100008 (2021)

    Article  Google Scholar 

  29. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OsDI, vol. 99, no (99), pp. 173–186 (1999)

    Google Scholar 

  30. Dib, O., Brousmiche, K.-L., Durand, A., Thea, E., Hamida, E.B.: Consortium blockchains: overview, applications and challenges. Int. J. Adv. Telecommun. 11(1&2), 51–64 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouwaida Abdallah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdallah, R., Abdallah, R. (2022). A Blockchain Based Methodology for Power Grid Control Systems. In: Daimi, K., Al Sadoon, A. (eds) Proceedings of the ICR’22 International Conference on Innovations in Computing Research. ICR 2022. Advances in Intelligent Systems and Computing, vol 1431. Springer, Cham. https://doi.org/10.1007/978-3-031-14054-9_40

Download citation

Publish with us

Policies and ethics