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Abstract. The continuous testing of small changes to systems has proven
to be useful and is widely adopted in the development of software sys-
tems. For this, software is tested in environments that are as close as
possible to the production environments. When testing IoT systems, this
approach is met with unique challenges that stem from the typically large
scale of the deployments, heterogeneity of nodes, challenging network
characteristics, and tight integration with the environment among oth-
ers. IoT test environments present a possible solution to these challenges
by emulating the nodes, networks, and possibly domain environments in
which IoT applications can be executed. This paper gives an overview of
the state of the art in IoT testing. We derive desirable characteristics of
IoT test environments, compare 18 tools that can be used in this respect,
and give a research outlook of future trends in this area.

Keywords: Internet of Things · Cyber-Physical Systems · Fog Comput-
ing · Edge Computing · Testing · Iterative Software Development.

1 Introduction

The Internet of Things (IoT) has the potential to transform our lives by con-
necting everyday objects to the Internet for smarter cities, factories, houses,
and more. To realize this vision, distributed software systems will need to in-
tegrate IoT devices – usually equipped with sensors and actuators – allowing
them to continuously monitor and interact with their environments. These dis-
tributed software systems of the IoT will span from devices to clouds and, in
many cases, also include intermediate resources at the edge or fog level [7]. Ex-
amples of distributed IoT systems include those that control and manage traffic
and transportation [19,36], those that enable telemedicine and remote patient
monitoring [18,10], and those that detect and predict failures as well as optimize
processes in urban infrastructures and manufacturing [13,22,9].

http://arxiv.org/abs/2112.09580v1
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A major remaining challenge to practically developing and deploying dis-
tributed IoT systems is the difficulty of adequately testing them [15]. This is
complicated due to a number of factors, including the large number of devices,
the heterogeneity of devices, mobile nodes resulting in dynamic topologies, net-
work disconnections and node failures, as well as a tight integration of systems
with their respective environments. At the same time, properly testing IoT sys-
tems in application domains such as traffic and transportation management,
patient monitoring, and factory processes is absolutely critical. Consequently,
the need for adequate testing of distributed IoT systems has been widely recog-
nized and many solutions have been put forward. Prominent examples include
hardware testbeds like StarBED [21] and FIT-IoT [1], hybrid approaches such
as Chameleon [14], as well as simulators like IoTSim [34] and iFogSim [11].

Hardware testbeds allow to execute actual application code in realistic set-
tings, yet can be limited in terms of scalability and flexibility. Hybrid test envi-
ronments address these limitations by incorporating both actual hardware and
virtual nodes. Simulations on the other hand enable to flexibly assess the behav-
ior of distributed applications over various scales and possible infrastructures.
However, they usually lack the ability to evaluate the non-functional properties
of actual application code.

All these approaches have in common that it is typically hard to test dis-
tributed IoT systems within their actual environment. Field testing regularly
requires a large and coordinated effort, so distributed IoT systems cannot be
tested continuously, while lab testing routinely resorts to merely replaying sen-
sor data, so that the distributed IoT systems, despite being equipped to interact
with environments, cannot actually influence their domains. This runs contrary
to generally understood and widely adopted principles and best practices of iter-
ative software development, where continuous testing of small changes to systems
in environments that mirror production environments as closely as possible is a
key mechanism for fast feedback and trust in changes. We, therefore, argue that
there is a significant lack of approaches and tools for continuously testing IoT
systems.

In this paper, we compare currently available IoT test environments to pro-
vide an overview over the current state of the art and expose the perceived
research gap. For our comparison, we selected test environments that

1. focus on testing software systems on geo-distributed, heterogeneous comput-
ing infrastructures such as IoT and edge/fog architectures,

2. allow to run actual system code (i.e., not merely simulating communication),
3. and have the ability to include virtual nodes, allowing tests at large and

various scales (i.e., no hardware-only testbeds).

We only discuss general-purpose test environments of which details have
been published (i.e., no proprietary offers such as IoTIFY4 or AWS IoT Device
Simulator5).

4 https://iotify.io/
5 https://aws.amazon.com/solutions/implementations/iot-device-simulator/

https://iotify.io/
https://aws.amazon.com/solutions/implementations/iot-device-simulator/
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We report the following aspects of IoT test environments in our comparison:
how and with which capabilities the tools provide nodes, how the network be-
tween nodes is realized, whether domain environments are integrated, as well as
general aspects such as project maturity and ongoing development.

The main contributions of this paper are:

– A description of key characteristics of IoT test environments, which can be
used to distinguish proposed solutions.

– A point-by-point comparison of state-of-the-art IoT test environments that
meet the outlined selection criteria.

– A discussion of current trends and considerable gaps in the state of the art
of IoT testing.

– An outlook on future work to close these gaps and an overview of our work
in this area.

The remainder of this paper is structured as follows: Section 2 describes cen-
tral characteristics of test environments. These are used in Section 3 to evaluate
and compare concrete test environments. Section 4 discusses the results of our
comparison. Section 5 presents the research outlook. Section 6 covers related
work. Lastly, Section 7 concludes this paper.

2 Characteristics of Test Environments

Continuously testing IoT systems and applications requires a test environment
that reproduces reality as close as possible. To classify and compare existing
test environments we derive several quantifiable characteristics from generally
desirable properties of test environments.

To be able to continuously develop and test distributed IoT systems in itera-
tive software development processes, we need to be able to deploy and run actual
code in flexible, yet realistic environments. To facilitate large-scale deployments
while also allowing the realistic testing of system behavior, we believe the sup-
port for both virtualized nodes as well as hardware nodes in test environments is
crucial. The testing of large-scale deployments further requires the distributabil-
ity of not only the nodes, but also the network representation and the simulation
of the domain environment. Another important aspect relating to the three fea-
ture dimensions here — nodes, networks, and the domain environments — is the
meaningful testing of fault tolerance of IoT systems by precisely injecting faults.
Lastly, because IoT systems are inherently integrated tightly with their specific
environment through sensors and actuators, we believe that the simulation of
the domain environment is a key characteristic for test environments.

The remainder of this section discusses the characteristics that will be used
in the following comparison of test environments in Section 3. We identified
16 different attributes, which are organized into four overarching categories,
regarding general features, the nodes, the network and the domain environment.
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2.1 General

First, we describe general attributes of test environments. We present the initial
year of publication along with the information if the project is actively main-

tained, which is assessed based on whether there has been a new release or active
collaboration (e.g., commits to the repository) in 2021.

As the maturity of a project is subjective, we try to formalize it as follows.
An empty circle ( ) denotes the lowest maturity, meaning that the specific test
environment only exists as a concept in form of a publication, but no actual tool
is available. We did not assess whether such concepts are actively maintained,
as this cannot be sensibly judged. The second degree of maturity ( ) is reported
if the tool is available only as a prototype without good documentation. If there
is a full system available with detailed documentation, we denote it as the third
degree of maturity ( ).

Next, we classify if a test environment is offered as a service. This indicates
whether there is a service where the test environment can be used without man-
ually deploying and operating it.

Lastly, we asses the property scriptable scenarios, which is fulfilled if the
execution of experiments can be controlled via a script. With the capability to
predefine schemes to alter parameters and characteristics of a simulation at run-
time, much more complex scenarios can be implemented. This is highly impor-
tant when systematically approaching an investigation with a test environment.

These general information about a test environment can serve as an indicator
for the applicability to current challenges, but they are also used to identify
recent trends in test environments in Section 4.

2.2 Nodes

An essential aspect of test environments is which type of nodes can be used. The
attributes investigated here determine if a scenario or application of interest can
at all be properly implemented or analyzed with a given test environment.

The first attribute, hardware integration, classifies the test environments ac-
cording to their capability to integrate physical hardware nodes. The availability
of hardware integration enables the inclusion of embedded systems and facilitates
testing of applications in realistic environments.

The virtualization type describes how virtual nodes are represented, namely
via virtual machines (V), containerized nodes (C), or a combination of the two
(VC). Depending on the application under test, the differentiation between con-
tainerized and virtualized nodes can be crucial. Virtual machines enable a more
realistic execution environment for the application under test, while container-
ization is a more light-weight approach.

For the energy consumption characteristic, we investigate if a test environ-
ment facilitates modeling (or, in the case of hardware nodes, monitoring) the
power consumption of nodes and network. In any use case where energy is a
scarce resource, for example for battery-constrained IoT devices, this feature
allows testing the effect of software changes to a node’s power usage.
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The distributability describes whether virtual nodes of the test environment
can be spread across multiple physical host nodes, enabling large-scale scenarios.

Finally, we investigate the possibility of fault injection. For individual nodes,
examples include the purposeful shutdown or internal failure of a given node
at a given time. By simulating such faults, the robustness of an application
or network setup towards faults can be tested. We analyze the characteristics
of distributability and fault injection as well for the network and the domain
environment categories.

2.3 Network

Regarding network, we first analyze the network type, namely how network is em-
ulated within the test environment. Traffic shaping (TS) allows users to change
network parameters, like delay or bandwidth. Examples of this are the Linux
Traffic Control (tc) or the more advanced NetEm. Tools based on software-
defined networks (SDN) use a virtualized network such as provided by Mininet
or MaxiNet. Lastly, network simulators (NS) can be used to model the under-
lying network. In our understanding, network simulators can simulate different
kinds of networks, also future ones, without having them physically available.
Common network simulators are ns-3 or OMNet++ with INET.

Network distributability regards the possibility of the test environment to
span the network across multiple physical hosts, leveraging more complex routing
schemes in a physical network. For traffic shaping-based approaches this comes
naturally if nodes are distributed, for network simulation-based approaches also
the simulation has to run in a distributed manner.

Fault injection entails active support of the tool to purposefully alter network
connections at runtime, e.g., the increase of latency or the loss of packets. Such
capabilities are important when comparing fault tolerance of network setups and
in general testing of network robustness.

2.4 Domain Environment

As IoT applications run in embedded, real-life settings like traffic control, water
management or smart homes, simulating the domain environment is of high
importance. First, we asses the general domain environment support of a tool,
meaning whether there is an API for connecting domain-specific simulators that
can interact with the test environment at runtime. Examples include a traffic
simulation, such as SUMO, that can send the coordinates of mobile nodes to the
test environment for it to adapt its networking parameterizations.

Similar to the node and network categories, we also asses the distributability

of the domain environment to see if the execution of the environment can be
spread across multiple hosts.

Last, we report the capability of fault injection inside the domain environ-
ment. We define this functionality to be present when the test environment sup-
ports to alter the domain environment during runtime in a way that is expected
to introduce faults in the application running on the nodes.
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Table 1. An overview of test environments for IoT systems. A gray background marks
works where code is not openly available. All characteristics are described in Section 2.
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EMU-IoT [27] 2019 C - - - -
ELIoT [23] 2017 C - - - -
IOTier [24] 2021 - C TS - -
Fogify [30] 2020 C TS - -
MockFog [12] 2019 V TS - -
Blockade [33] 2014 C TS - -
Distem [28] 2013 C TS - -
Fogbed [6] 2018 C SDN - -
EmuFog [20] 2017 C SDN - -
Dockemu [26] 2015 C NS - -
EmuEdge [35] 2019 VC TS - -
Héctor [2] 2019 V TS - -
Sendorek et al. [29] 2018 - V SDN - -
Chameleon [14] 2015 V SDN - -
StarBED [21] 2002 V SDN - -
UiTiOt [16] 2017 - C NS - -
WHYNET [38] 2006 - V NS - -
MobiNet [17] 2005 - V NS - -

3 Comparison of Test Environments

Based on the selection criteria defined in Section 1, we selected 18 environments
for testing IoT applications and evaluated them on the characteristics described
in Section 2. Table 1 provides an overview of all evaluated tools. We clustered
the test environments (1) by their ability to integrate real IoT devices in their
experiments and (2) by the type of network modeling approach they use.

3.1 Test Environments without Hardware Integration

First, we cover test environments that emulate IoT environments without the
possibility to integrate real IoT devices in experiments. These test environments
are further categorized based on whether they use network simulation, SDN-
based solutions, or simple traffic shaping to emulate realistic network traffic.
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Using no Network Model. EMU-IoT [27] is a container-based test envi-
ronment with a focus on defining, orchestrating and monitoring reproducible
experiments. Although the authors describe the many challenges faced by devel-
oping IoT test environments, their implementation does not consider any kind
of network emulation and has no mechanism for injecting faults into the system.

ELIoT [23] is based on Docker containers and supports the IoT protocols
CoAP and LWM2M by using the open-source projects Leshan and coap-node.
While ELIoT includes the interaction with the environment for the use case
described in the paper, this interaction is only modeled within the nodes (i.e.,
they implemented a simple calculation of an illuminance sensor value based on
the time of day). It does not integrate an environment emulation that would
allow for two-way interaction between IoT systems and the environment.

Using Traffic Shaping. IOTier [24] is a virtual testbed for tiered IoT envi-
ronments that is unfortunately not openly available. Nodes are represented via
resource-constrained containers while networking is based on NetEm. A special
focus is grouping emulated components into tiers with comparable capabilities,
and enabling inter-tier as well as intra-tier communication. It features a testbed
controller in which operators can define desired runtime states over time. How-
ever, there is no API for integrating simulators of domain environments. Its
simulation engine uses fixed-increment time progression and can modify experi-
ments via scheduled and conditional events.

Fogify [30] appears to be one of the most capable tools according to our cri-
teria. It uses Infrastructure-as-Code descriptions for containerized deployments
to define experiment settings (i.e., Docker Compose) and features the possibility
to adapt configurations at runtime (e.g., for injecting faults). Fogify uses Vir-
tual eXtensible LAN (VXLAN) for overlay networks and is distributable across
multiple physical hosts. We classified this tool as being able to model energy
consumption as this feature is described in the paper. However, this is currently
not implemented in code. Although Fogify has an API for interacting with exper-
iments during runtime, there is not yet a uniform way to integrate simulations
of domain environments.

MockFog [12] is a tool for automated execution of fog application experi-
ments. It consists of three modules: one for infrastructure setup, one for appli-
cation management, and one for experiment orchestration, which enables the
scripting of scenarios. The experiment infrastructures are set up automatically
in public cloud environments via dockerized application containers. Hence, appli-
cations must support running inside Docker and must be available as container
image. Experiment descriptions can be used to generate events, such as traffic
scenarios and network or machine failures.

Blockade [33] is a test environment based on Docker containers and traffic
shaping. The user creates a setup similar to a Docker Compose file and Blockade
manages the set-up as well as tear-down processes. Each node is implemented
as a separate Docker container. Blockade offers basic networking capabilities by
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using the Docker network and integrates the manipulation of network parameters
via, e.g., NetEm settings.

Distem [28] is a virtual testbed using Linux Containers (LXC) that can be
executed on multiple physical hosts. One focus of Distem is resource allocation
and assignment to achieve realistic setups for special devices (like IoT devices).
Network parameters can be adapted using NetEm. Distem can be used via the
command line and allows scriptable scenarios via its Ruby library.

Using Software-Defined Networking. Fogbed [6], as described by the origi-
nal paper, uses Mininet for networking and is hence bound to a single host. The
latest prototype additionally extends MaxiNet, which enables emulating envi-
ronments that span several physical machines. Fogbed furthermore enables the
testing of third-party systems such as resource management, virtualization, and
service orchestration through standard interfaces.

EmuFog [20] is a fog computing emulation framework based on the dis-
tributable network emulator MaxiNet. The framework does not resort to simula-
tions but is able to span an emulated network of thousands of virtual devices over
multiple physical machines. EmuFog focuses on the networking components of
fog computing by embedding a network topology generator, enhancer, and node
placement algorithm. Applications have to be deployed as Docker containers.

Using Network Simulation. Dockemu [26] is the only tool without hardware
integration that uses network simulation. It utilizes the network simulator ns-3
to model the communication between nodes, which in turn are represented by
Docker containers. The paper recognizes the importance of providing realistic
conditions and environmental factors for the applications under test. The tool
itself, however, is restricted to controlling properties of nodes and the network
but does not include mechanisms to provide a domain environment in which the
application operates.

3.2 Test Environments with Hardware Integration

Next, we describe hybrid tools that offer the possibility to integrate real IoT
devices in otherwise emulated environments to make experiments more realistic.

Using Traffic Shaping. EmuEdge [35] is an openly available, hybrid simu-
lator that can represent nodes using containers, virtual machines, and physical
devices. It supports OS-level as well as system-level virtualization and can inter-
face simulators and real testbeds. Networking is based on networking namespaces
(netns) and can replay real-world network traces.

Héctor [2] is an IoT testing framework with the main goal of representing de-
vices realistically. Devices are emulated with QEMU in system mode, allowing
fine grained performance moderation of individual devices and testing on the
target platform, including its corresponding microarchitecture. Specifically, this
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allows testing of devices that are not able to run Docker containers (e.g., mi-
crocontrollers). Physical as well as emulated devices can be part of the network,
which itself can have emulated properties such as added delay and packet loss.

Using Software-Defined Networking. Sendorek et al. [29] describe an elab-
orated concept for a software-defined virtual test environment for IoT systems.
Their system supports three so called ”immersion levels” that range from fully
virtualized environments for low-cost, scalable experiments to environments with
real devices and sensors for testing under realistic conditions. The authors do
not cover distributability or fault injection in their concept.

Chameleon [14] builds upon OpenStack to deliver a testbed that can be used
like a cloud. Chameleon is both a concept with an open-source implementation
and a platform service supported by hardware at University of Chicago and
at the Texas Advanced Computing Center that includes different nodes and
setups including GPUs, FPGAs as well as ARM and x86 cores. In addition
to bare metal nodes, nodes virtualized with KVM can be used. Besides the
concept of an OpenStack-based testbed, the Chameleon project has some insights
regarding the operational side of such a testbed, like user management, fair
resource allocation with leases and lease reapers, security attacks etc.

StarBED [21] is a large-scale general purpose network testbed based on co-
located physical nodes which uses SpringOS to build experiment topologies and
drives experiments. Its updated fourth version implements additional features,
such as wireless network emulation and a background traffic generator. Although
StarBED aims to enable Internet-scale experiments, it apparently lacks the pos-
sibility to emulate IoT characteristics (e.g., resource constraints, heterogeneous
network capacities) and mainly acts as a resource management system.

Using Network Simulation. UiTiOt [16], meanwhile in its third version,
is a test environment for large-scale wireless IoT applications. Instances of the
application under test are executed using Docker Swarm on top of an OpenStack
instance. The network connections between the application instance (e.g., IEEE
802.11a/b/g, ZigBee) are emulated using the wireless emulator QOMET. Apart
from the virtual resources, UiTiOt can integrate physical nodes into the network.
The authors also introduce a web interface for users of the testbed and a load-
balanced database for receiving and storing logs from the application under test.

WHYNET [38] is a hybrid testbed that focuses on mobile communication and
applications, using a combination of simulation, emulation, as well as physical
nodes and connections. It simulates the network via the QualNet simulator and
the sensor network simulation framework sQualNet, which is one of the few tools
that model energy consumption. Using the TWINE framework [37], it emulates
the network stack and the execution of applications to provide a scalable but
realistic test environment. WHYNET includes a basic concept of mobility but
does not allow the integration of domain-specific simulators for this purpose.

MobiNet [17] focuses on the evaluation of applications and network setup in
ad hoc wireless networks. The tool allows the testing of different deployment
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schemes for applications and includes the simulation of movement of nodes. The
core of MobiNet takes care of emulating the physical, data link, and network
layers. Edge nodes can be distributed across machines and can host multiple
virtual nodes for large-scale environments. Unfortunately, the code for MobiNet
is not publicly available.

4 Discussion

We identified themes that emerged in our comparison of test environments in
each of our categories of characteristics: general characteristics, and those that
relate to representation of nodes, network and domain environment.

4.1 General

Testing of IoT systems is an active research area and many solutions try to help
the developers of IoT systems in this regard. In our comparison, most systems
were initially published within the last five years. These works include mature
and widely adopted projects, but also ideas and research prototypes. Only two
of the examined test environments are offered as a service.

4.2 Nodes

In our comparison we investigated the ability of test environments to use virtual
and hardware nodes for the testing of IoT systems. For the virtual nodes, both
containers and virtual machines are used, with recent works showing a tendency
to use more lightweight container virtualization. This choice of virtualization
type correlates with the integration of hardware nodes: Systems that include
hardware nodes mostly use virtual machines, while the others mostly use con-
tainers. The ability to execute some nodes on actual hardware is missing from
more than half of the test environments, even though this is especially impor-
tant in many IoT use cases because often highly customized hardware is used.
While energy consumption modeling is crucial to test the behavior of battery-
constrained IoT devices, this is barely considered in the tools covered. A better
integration of power models, for example using simulators built for this purpose
[32], would be an important next step for virtual test environments.

4.3 Network

The environments included in our comparison contain a mix of different methods
to model the network. This includes two systems that do not even include the
ability to specify a network topology, seven systems that support traffic shaping
(usually via tc and NetEm), as well as full network simulation (four systems)
and software defined networking (five systems). The scalability to large networks
that need to be realized on multiple execution nodes is possible in almost all test
environments that can distribute nodes. Network distributability only seems to
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still be a challenge when network simulators are used. Fault injection is an im-
portant feature for IoT testing, but dedicated support for defining and executing
specific failure scenarios is missing from many IoT test environments.

4.4 Domain Environment

Despite the tight integration of distributed IoT systems with their environment,
support for the simulation of domain environments is missing from all testing
tools included in our comparison. Accordingly, system developers have to resort
to expensive and time-consuming field testing, when they want to test the inter-
action of IoT systems with their environment. While some environmental factors
can be integrated in the testing by feeding applications recorded streams of sen-
sor data, this integration is naturally limited and cannot model the manipulation
of the environment by IoT systems.

5 Research Outlook

While many tools exist that tackle the problem of testing distributed IoT sys-
tems, there are still important open challenges.

Research Gap. Currently, there is limited support for assessing key system
requirements such as high resilience and low energy consumption. However, the
biggest gap in our view is the missing integration with domain environment sim-
ulations. This integration is particularly important for IoT systems, because the
tight coupling and interaction with the environment is a fundamental property of
the Internet of Things. The integration of domain environment simulations like
traffic or infrastructure simulations would allow for meaningful and continuous
testing of these interactions.

An Ideal IoT Test Environment. As we have derived the characteristics
described in Section 2 from our understanding of the needs of a test environ-
ment for continuous testing, an ideal IoT test environment would fulfill all these
characteristics. Specifically, an ideal test environment would:

– support testing on virtual and hardware nodes,
– model and monitor the energy consumption,
– include a network representation that allows complex network topologies and

dynamic changes thereof,
– integrate domain environment simulations,
– enable the distribution of nodes, networks, and domain environments across

multiple physical nodes to allow the testing of large-scale deployments,
– and also support fault injection on these three dimensions to evaluate the

fault tolerance of the system under test.

The Marvis Testing Framework.We are working on a framework towards
our vision of an ideal IoT test environment, called Marvis [3]. By combining
virtual nodes (containers) with hardware nodes, Marvis offers capabilities for
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hybrid setups to combine the advantages of scalability and realism. Nodes can
communicate via a simulated network realized by the network simulator ns-3.

A focus of our work is the integration of domain environment simulators to
enable the continuous testing of the often intricate interactions between the IoT
system and the environment. Currently, Marvis integrates the traffic simulator
SUMO to demonstrate this, allowing the testing of interactions between the real
software systems that run on the nodes and the movement of road users in the
traffic simulation. This integration is bidirectional, meaning both, the change of
the movement of road users by the applications under test, and the change of
connectivity in the network simulation by the traffic simulation is possible.

Besides this, Marvis also offers fault injection in the three feature dimensions:
It is possible to inject faults in the nodes (e.g., start and stop nodes, or execute
commands), the network simulation (e.g., connect or disconnect nodes, change
network parameters like delay), or the domain-specific simulation (e.g., changing
speed of vehicles).

6 Related Work

Testing has been recognized as an important topic in IoT systems research since
its beginning. Consequently, several related works provide an overview of testing
research, environments and frameworks.

Tonneau et al. [31] presented an extensive work focusing on the question of
choosing the right wireless sensor network testing platform for specific environ-
ment characteristics in 2015. It is the only related work in which all presented
testbeds consist of devices carrying real sensors – no platforms were presented
that only simulate or emulate devices under test. Tonneau et al. considered seven
platform features: experimentation, scale, repeatability, mobility, virtualization,
federation, and heterogeneity.

Dias et al. [8] identified the motivation and challenges of testing planetary-
scale, heterogeneous IoT applications and devices. Surveyed testing tools were
chosen with no specific properties in mind, making 16 IoT testing platforms that
were available in 2018 part of the survey. Tools were compared based on ten prop-
erties, including supported IoT layers, test level, test method, supported plat-
forms, and scope (market/academic). The authors conclude that further research
and development in the area of IoT testing is necessary, given the criticality of
many IoT systems and the challenges of testing them.

A journal article from the same year by Chernyshev et al. [5] discusses the
state of IoT research, simulators and testbeds. They defined a set of relevant
research topics, including eight goals for the IoT. Furthermore, they performed
a comparative study of nine simulation tools, categorized by the scope of coverage
of the IoT architecture layers, as well as a comparison of three large-scale IoT
hardware testbeds. They identified three open challenges concerning IoT testing:
A lack of support for common IoT communication standards, a lack of end-to-
end service simulation across all IoT layers, and a large discrepancy between
simulator and real-world test results.
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Patel et al. [25] compared a total of 26 simulators, emulators, and physical
testbeds for the IoT. The authors discussed these groups of test environments
independently from each other on characteristics such as scope, scale, and se-
curity measures. While there is no specific survey system or selection method
given, the comparison is followed by a short analysis of the usage of simulators,
emulators, and physical testbeds in the different stages of software development.

Bures et al. [4] performed a systematic mapping study on interoperability and
integration testing of IoT systems. Rather than comparing specific tools, they
analyzed 115 out of 803 identified papers in the general area of IoT. The liter-
ature study was guided by seven research questions regarding research trends,
researchers, publication media, topics, challenges, and limitations mentioned in
the surveyed works. They conclude that there is a need for more specific testing
methods for IoT systems.

7 Summary

This paper presented the current state of the art in continuous testing of dis-
tributed IoT systems. Specifically, we described desirable characteristics for test
environments in this context and compared IoT test environments that allow
to run system code on virtual nodes. Many solutions have been put forward,
implementing various approaches to providing execution hosts and realizing net-
work conditions. However, no currently available solution provides support for
domain simulations, even though IoT systems form cyber-physical systems that
make sense of and interact with their surroundings.

We believe that systems that monitor and affect the real world should be
tested comprehensively, especially in critical application domains such as traffic
management, patient monitoring, and manufacturing. Future work should there-
fore focus on providing comprehensive test environments, including simulation
of domains and modeling of system characteristics such as energy consumption.
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