Abstract
Event data provide the main source of information for analyzing and improving processes in organizations. Process mining techniques capture the state of running processes w.r.t. various aspects, such as activity-flow and performance metrics. The next step for process owners is to take the provided insights and turn them into actions in order to improve their processes. These actions may be taken in different aspects of a process. However, simply being aware of the process aspects that need to be improved as well as potential actions is insufficient. The key step in between is to assess the outcomes of the decisions and improvements. In this paper, we propose a framework to systematically compare event data and the simulated event data of organizations, as well as comparing the results of modified processes in different settings. The proposed framework could be provided as an analytic service to enable organizations in easily accessing event data analytics. The framework is supported with a simulation tool that enables applying changes to the processes and re-running the process in various scenarios. The simulation step includes different perspectives of a process that can be captured automatically and modified by the user. Then, we apply a state-of-the-art comparison approach for processes using their event data which visually reflects the effects of these changes in the process, i.e., evaluating the process improvement. Our framework also includes the implementation of the change measurement module as a tool.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
van der Aalst, W.M.P.: Process mining and simulation: a match made in heaven! In: Computer Simulation Conference, pp. 1–12. ACM Press (2018)
Camargo, M., Dumas, M., Rojas, O.G.: Simod: a tool for automated discovery of business process simulation models, pp. 139–143 (2019)
Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7
Denisov, V., Fahland, D., van der Aalst, W.M.P.: Unbiased, fine-grained description of processes performance from event data. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 139–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_9
Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic conformance checking. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 127–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_8
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_6
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet Physics Doklady, vol. 10, pp. 707–710. Soviet Union (1966)
Martin, N., Depaire, B., Caris, A.: The use of process mining in business process simulation model construction. Bus. Inf. Syst. Eng. 58(1), 73–87 (2016). https://doi.org/10.1007/s12599-015-0410-4
Pourbafrani, M., van der Aalst, W.M.P.: PMSD: data-driven simulation in process mining. In: Proceedings of the Demonstration Track at BPM 2020 co-located with 18th International Conference on Business Process Management, BPM, pp. 77–81 (2020). http://ceur-ws.org/Vol-2673/paperDR03.pdf
Pourbafrani, M., van der Aalst, W.M.P.: Extracting process features from event logs to learn coarse-grained simulation models. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 125–140. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_8
Pourbafrani, M., Balyan, S., Ahmed, M., Chugh, S., van der Aalst, W.M.P.: GenCPN: automatic generation of CPN models for processes (2021)
Pourbafrani, M., Jiao, S., van der Aalst, W.M.P.: SIMPT: process improvement using interactive simulation of time-aware process trees. In: Cherfi, S., Perini, A., Nurcan, S. (eds.) RCIS 2021. LNBIP, vol. 415, pp. 588–594. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75018-3_40
Pourbafrani, M., Vasudevan, S., Zafar, F., Xingran, Y., Singh, R., van der Aalst, W.M.P.: A python extension to simulate petri nets in process mining. CoRR abs/2102.08774 (2021)
Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Semi-automated time-granularity detection for data-driven simulation using process mining and system dynamics. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 77–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_6
Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Supporting automatic system dynamics model generation for simulation in the context of process mining. In: Abramowicz, W., Klein, G. (eds.) BIS 2020. LNBIP, vol. 389, pp. 249–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53337-3_19
Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Supporting decisions in production line processes by combining process mining and system dynamics. In: Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R. (eds.) IHSI 2020. AISC, vol. 1131, pp. 461–467. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39512-4_72
Pufahl, L., Weske, M.: Extensible BPMN process simulator. In: Proceedings of the BPM Demo Track and BPM Dissertation Award co-located with 15th International Conference on Business Process Modeling (BPM) (2017)
Rafiei, M., van der Aalst, W.M.P.: Towards quantifying privacy in process mining. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 385–397. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_29
Rafiei, M., Schnitzler, A., van der Aalst, W.M.P.: PC4PM: a tool for privacy/confidentiality preservation in process mining. In: Proceedings of the Demonstration Track at BPM co-located with 19th International Conference on Business Process Management (BPM), vol. 2973, pp. 106–110. CEUR-WS.org (2021)
Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-Markovian stochastic petri nets. Inf. Syst. 54, 1–14 (2015)
Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation models. Inf. Syst. 34(3), 305–327 (2009)
Sani, M.F., Gonzalez, J.J.G., van Zelst, S.J., van der Aalst, W.M.: Conformance checking approximation using simulation. In: 2020 2nd International Conference on Process Mining (ICPM), pp. 105–112 (2020)
Verbeek, E., van Hattem, M., Reijers, H., de Munk, W.: Protos 7.0: simulation made accessible. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 465–474. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744_27
Acknowledgments
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-EXC-2023 Internet of Production - 390621612. We also thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Pourbafrani, M., van der Aalst, W.M.P. (2022). Interactive Process Improvement Using Simulation of Enriched Process Trees. In: Hacid, H., et al. Service-Oriented Computing – ICSOC 2021 Workshops. ICSOC 2021. Lecture Notes in Computer Science, vol 13236. Springer, Cham. https://doi.org/10.1007/978-3-031-14135-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-14135-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14134-8
Online ISBN: 978-3-031-14135-5
eBook Packages: Computer ScienceComputer Science (R0)