Skip to main content

Interactive Process Improvement Using Simulation of Enriched Process Trees

  • Conference paper
  • First Online:
Service-Oriented Computing – ICSOC 2021 Workshops (ICSOC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13236))

Included in the following conference series:

Abstract

Event data provide the main source of information for analyzing and improving processes in organizations. Process mining techniques capture the state of running processes w.r.t. various aspects, such as activity-flow and performance metrics. The next step for process owners is to take the provided insights and turn them into actions in order to improve their processes. These actions may be taken in different aspects of a process. However, simply being aware of the process aspects that need to be improved as well as potential actions is insufficient. The key step in between is to assess the outcomes of the decisions and improvements. In this paper, we propose a framework to systematically compare event data and the simulated event data of organizations, as well as comparing the results of modified processes in different settings. The proposed framework could be provided as an analytic service to enable organizations in easily accessing event data analytics. The framework is supported with a simulation tool that enables applying changes to the processes and re-running the process in various scenarios. The simulation step includes different perspectives of a process that can be captured automatically and modified by the user. Then, we apply a state-of-the-art comparison approach for processes using their event data which visually reflects the effects of these changes in the process, i.e., evaluating the process improvement. Our framework also includes the implementation of the change measurement module as a tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/mbafrani/VisualComparison2EventLogs.

  2. 2.

    https://github.com/mbafrani/SIMPT-SimulatingProcessTrees.

  3. 3.

    https://github.com/mbafrani/VisualComparison2EventLogs.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    Book  Google Scholar 

  2. van der Aalst, W.M.P.: Process mining and simulation: a match made in heaven! In: Computer Simulation Conference, pp. 1–12. ACM Press (2018)

    Google Scholar 

  3. Camargo, M., Dumas, M., Rojas, O.G.: Simod: a tool for automated discovery of business process simulation models, pp. 139–143 (2019)

    Google Scholar 

  4. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7

    Book  Google Scholar 

  5. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Unbiased, fine-grained description of processes performance from event data. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 139–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_9

    Chapter  Google Scholar 

  6. Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochastic conformance checking. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 127–143. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26643-1_8

    Chapter  Google Scholar 

  7. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_6

    Chapter  Google Scholar 

  8. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet Physics Doklady, vol. 10, pp. 707–710. Soviet Union (1966)

    Google Scholar 

  9. Martin, N., Depaire, B., Caris, A.: The use of process mining in business process simulation model construction. Bus. Inf. Syst. Eng. 58(1), 73–87 (2016). https://doi.org/10.1007/s12599-015-0410-4

    Article  Google Scholar 

  10. Pourbafrani, M., van der Aalst, W.M.P.: PMSD: data-driven simulation in process mining. In: Proceedings of the Demonstration Track at BPM 2020 co-located with 18th International Conference on Business Process Management, BPM, pp. 77–81 (2020). http://ceur-ws.org/Vol-2673/paperDR03.pdf

  11. Pourbafrani, M., van der Aalst, W.M.P.: Extracting process features from event logs to learn coarse-grained simulation models. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 125–140. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_8

    Chapter  Google Scholar 

  12. Pourbafrani, M., Balyan, S., Ahmed, M., Chugh, S., van der Aalst, W.M.P.: GenCPN: automatic generation of CPN models for processes (2021)

    Google Scholar 

  13. Pourbafrani, M., Jiao, S., van der Aalst, W.M.P.: SIMPT: process improvement using interactive simulation of time-aware process trees. In: Cherfi, S., Perini, A., Nurcan, S. (eds.) RCIS 2021. LNBIP, vol. 415, pp. 588–594. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75018-3_40

    Chapter  Google Scholar 

  14. Pourbafrani, M., Vasudevan, S., Zafar, F., Xingran, Y., Singh, R., van der Aalst, W.M.P.: A python extension to simulate petri nets in process mining. CoRR abs/2102.08774 (2021)

    Google Scholar 

  15. Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Semi-automated time-granularity detection for data-driven simulation using process mining and system dynamics. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 77–91. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_6

    Chapter  Google Scholar 

  16. Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Supporting automatic system dynamics model generation for simulation in the context of process mining. In: Abramowicz, W., Klein, G. (eds.) BIS 2020. LNBIP, vol. 389, pp. 249–263. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53337-3_19

    Chapter  Google Scholar 

  17. Pourbafrani, M., van Zelst, S.J., van der Aalst, W.M.P.: Supporting decisions in production line processes by combining process mining and system dynamics. In: Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R. (eds.) IHSI 2020. AISC, vol. 1131, pp. 461–467. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39512-4_72

    Chapter  Google Scholar 

  18. Pufahl, L., Weske, M.: Extensible BPMN process simulator. In: Proceedings of the BPM Demo Track and BPM Dissertation Award co-located with 15th International Conference on Business Process Modeling (BPM) (2017)

    Google Scholar 

  19. Rafiei, M., van der Aalst, W.M.P.: Towards quantifying privacy in process mining. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 385–397. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_29

    Chapter  Google Scholar 

  20. Rafiei, M., Schnitzler, A., van der Aalst, W.M.P.: PC4PM: a tool for privacy/confidentiality preservation in process mining. In: Proceedings of the Demonstration Track at BPM co-located with 19th International Conference on Business Process Management (BPM), vol. 2973, pp. 106–110. CEUR-WS.org (2021)

    Google Scholar 

  21. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-Markovian stochastic petri nets. Inf. Syst. 54, 1–14 (2015)

    Article  Google Scholar 

  22. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation models. Inf. Syst. 34(3), 305–327 (2009)

    Article  Google Scholar 

  23. Sani, M.F., Gonzalez, J.J.G., van Zelst, S.J., van der Aalst, W.M.: Conformance checking approximation using simulation. In: 2020 2nd International Conference on Process Mining (ICPM), pp. 105–112 (2020)

    Google Scholar 

  24. Verbeek, E., van Hattem, M., Reijers, H., de Munk, W.: Protos 7.0: simulation made accessible. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 465–474. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744_27

    Chapter  Google Scholar 

Download references

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy-EXC-2023 Internet of Production - 390621612. We also thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Pourbafrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pourbafrani, M., van der Aalst, W.M.P. (2022). Interactive Process Improvement Using Simulation of Enriched Process Trees. In: Hacid, H., et al. Service-Oriented Computing – ICSOC 2021 Workshops. ICSOC 2021. Lecture Notes in Computer Science, vol 13236. Springer, Cham. https://doi.org/10.1007/978-3-031-14135-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14135-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14134-8

  • Online ISBN: 978-3-031-14135-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics