Skip to main content

Simpler Is Better: On the Use of Autoencoders for Intrusion Detection

  • Conference paper
  • First Online:
Quality of Information and Communications Technology (QUATIC 2022)

Abstract

The ever-growing occurrence of computer security incidents calls for advanced intrusion detection techniques. A wide body of literature dealing with Intrusion Detection Systems (IDSes) is based on machine learning; many proposals rely on the use of autoencoders (AEs), due to their capability to analyze complex, high-dimensional and large-scale data. Most of the times, AEs are used as building blocks of much more complex detection architectures, possibly in combination with sophisticated feature selection techniques. This paper summarizes several years of work in this field, suggesting that “simpler is better” and that a carefully tuned and trained AE can be used in isolation, obtaining recognition results comparable with those attained by more complex designs. The best practices presented here, regarding dataset production and sanitization, AE set-up and training, threshold setting, possible use of simple feature selection techniques for performance improvement can be valuable for any practitioner willing to use autoencoders for intrusion detection purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/ahlashkari/CICFlowMeter.

  2. 2.

    https://downloads.distrinet-research.be/WTMC2021/tools_datasets.html.

  3. 3.

    Attacks are taken from the USB-IDS-1 dataset.

References

  1. Catillo, M., Del Vecchio, A., Ocone, L., Pecchia, A., Villano, U.: USB-IDS-1: a public multilayer dataset of labeled network flows for IDS evaluation. In: Proceedings International Conference on Dependable Systems and Networks Workshops (DSN-W), pp. 1–6. IEEE (2021)

    Google Scholar 

  2. Catillo, M., Pecchia, A., Villano, U.: AutoLog: anomaly detection by deep autoencoding of system logs. Expert Syst. Appl. 191, 116263 (2022)

    Google Scholar 

  3. Catillo, M., Rak, M., Villano, U.: Discovery of DoS attacks by the ZED-IDS anomaly detector. J. High Speed Netw. 25(4), 349–365 (2019)

    Google Scholar 

  4. Catillo, M., Del Vecchio, A., Pecchia, A., Villano, U.: Transferability of machine learning models learned from public intrusion detection datasets: the CICIDS2017 case study. Softw. Qual. J. (2022). https://doi.org/10.1007/s11219-022-09587-0

  5. Catillo, M., Pecchia, A., Rak, M., Villano, U.: Demystifying the role of public intrusion datasets: a replication study of DoS network traffic data. Comput. Secur. 108, 102341 (2021)

    Google Scholar 

  6. Catillo, M., Rak, M., Villano, U.: 2L-ZED-IDS: a two-level anomaly detector for multiple attack classes. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) WAINA 2020. AISC, vol. 1150, pp. 687–696. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44038-1_63

  7. Dina, A.S., Manivannan, D.: Intrusion detection based on machine learning techniques in computer networks. Internet Things 16, 100462 (2021)

    Google Scholar 

  8. Engelen, G., Rimmer, V., Joosen, W.: Troubleshooting an intrusion detection dataset: the CICIDS2017 case study. In: 2021 IEEE Security and Privacy Workshops (SPW), pp. 7–12. IEEE (2021)

    Google Scholar 

  9. Feng, S., Duarte, M.F.: Graph regularized autoencoder-based unsupervised feature selection. In: Proceedings International Conference on Signals, Systems, and Computers, pp. 55–59. IEEE (2018)

    Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  11. Jiang, J., Han, G., Liu, L., Shu, L., Guizani, M.: Outlier detection approaches based on machine learning in the Internet-of-Things. IEEE Wirel. Commun. 27(3), 53–59 (2020)

    Article  Google Scholar 

  12. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.: Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity 2(1), 1–22 (2019). https://doi.org/10.1186/s42400-019-0038-7

    Article  Google Scholar 

  13. Kilincer, I., Ertam, F., Sengur, A.: Machine learning methods for cyber security intrusion detection: datasets and comparative study. Comput. Netw. 188, 107840 (2021)

    Google Scholar 

  14. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37(2), 233–243 (1991)

    Article  Google Scholar 

  15. Kunang, Y.N., Nurmaini, S., Stiawan, D., Zarkasi, A., Firdaus, Jasmir: Automatic features extraction using autoencoder in intrusion detection system. In: Proceedings International Conference on Electrical Engineering and Computer Science (ICECOS), pp. 219–224. IEEE (2018)

    Google Scholar 

  16. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep learning-based network anomaly detection. Clust. Comput. 22(1), 949–961 (2017). https://doi.org/10.1007/s10586-017-1117-8

    Article  Google Scholar 

  17. Maciá-Fernández, G., Camacho, J., Magán-Carrión, R., García-Teodoro, P., Therón, R.: UGR’16: a new dataset for the evaluation of cyclostationarity-based network IDSs. Comput. Secur. 73, 411–424 (2017)

    Google Scholar 

  18. Maseer, Z.K., Yusof, R., Bahaman, N., Mostafa, S.A., Foozy, C.F.M.: Benchmarking of machine learning for anomaly based intrusion detection systems in the CICIDS2017 dataset. IEEE Access 9, 22351–22370 (2021)

    Google Scholar 

  19. Min, B., Yoo, J., Kim, S., Shin, D., Shin, D.: Network anomaly detection using memory-augmented deep autoencoder. IEEE Access 9, 104695–104706 (2021)

    Google Scholar 

  20. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. In: Proceedings International Conference of Network and Distributed System Security Symposium (NDSS) (2018)

    Google Scholar 

  21. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: Proceedings International Conference Military Communications and Information Systems Conference, pp. 1–6. IEEE (2015)

    Google Scholar 

  22. Panigrahi, R., et al.: Performance assessment of supervised classifiers for designing intrusion detection systems: a comprehensive review and recommendations for future research. Mathematics 9(6), 690 (2021)

    Google Scholar 

  23. Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of network-based intrusion detection data sets. Comput. Secur. 86, 147–167 (2019)

    Google Scholar 

  24. Sharafaldin, I., Lashkari, A.H., Ghorbani., A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: Proceedings International Conference on Information Systems Security and Privacy, pp. 108–116. SciTePress (2018)

    Google Scholar 

  25. Taher, K.A., Mohammed Yasin Jisan, B., Rahman, M.M.: Network intrusion detection using supervised machine learning technique with feature selection. In: Proceedings International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST). IEEE (2019)

    Google Scholar 

  26. Thakur, S., Chakraborty, A., De, R., Kumar, N., Sarkar, R.: Intrusion detection in cyber-physical systems using a generic and domain specific deep autoencoder model. Comput. Electr. Eng. 91, 107044 (2021)

    Google Scholar 

  27. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    Google Scholar 

  28. Wei-Chao, L., Shih-Wen, K., Chih-Fong, T.: CANN: an intrusion detection system based on combining cluster centers and nearest neighbors. Knowl. Based Syst. 78, 13–21 (2015)

    Google Scholar 

  29. XuKui, L., Wei, C., Qianru, Z., Lifa, W.: Building auto-encoder intrusion detection system based on random forest feature selection. Comput. Secur. 95, 101851 (2020)

    Google Scholar 

  30. Zhong, Y., et al.: HELAD: a novel network anomaly detection model based on heterogeneous ensemble learning. Comput. Netw. 169 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Villano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Catillo, M., Pecchia, A., Villano, U. (2022). Simpler Is Better: On the Use of Autoencoders for Intrusion Detection. In: Vallecillo, A., Visser, J., Pérez-Castillo, R. (eds) Quality of Information and Communications Technology. QUATIC 2022. Communications in Computer and Information Science, vol 1621. Springer, Cham. https://doi.org/10.1007/978-3-031-14179-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14179-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14178-2

  • Online ISBN: 978-3-031-14179-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics