Skip to main content

An Enhanced Adaptive Anti-packet Recovery Method forĀ Inter-vehicle Communications

  • Conference paper
  • First Online:
Advances in Network-Based Information Systems (NBiS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 526))

Included in the following conference series:

Abstract

In this paper, we propose an Enhanced Adaptive Anti-packet Recovery (EAAR) method based on epidemic protocol for inter-vehicle communications. Our method can be applied to conventional Delay Tolerant Networking (DTN) protocols. We evaluate the proposed EAAR method and compare the performance with conventional epidemic protocol. From the simulation results, we found that the delivery rate improves with increasing of \(\alpha \) and \(\beta \) thresholds values. However, the delivery rate for 100 nodes did not decrease for \(\beta \) 0.7 or higher compared with the conventional method. The threshold value of \(\beta \) should be less than 0.5 in order to reduce the overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rec. ITU-R P.1411-7: propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. ITU (2013)

    Google ScholarĀ 

  2. Barroca, C., Grilo, A., Pereira, P.R.: Improving message delivery in UAV-based delay tolerant networks. In: Proceedings of the 16th International Conference on Intelligent Transportation Systems Telecommunications (ITST-2018), pp. 1ā€“7 (2018)

    Google ScholarĀ 

  3. Cao, Y., Jiang, T., Kaiwartya, O., Sun, H., Zhou, H., Wang, R.: Toward pre-empted EV charging recommendation through V2V-based reservation system. IEEE Trans. Syst. Man Cybern. Syst. 51(5), 3026ā€“3039 (2021)

    ArticleĀ  Google ScholarĀ 

  4. Cerf, V., et al.: Delay-tolerant networking architecture. IETF RFC 4838 (Informational) (2007)

    Google ScholarĀ 

  5. Chuah, M.C., Ma, W.B.: Integrated buffer and route management in a dtn with message ferry. In: Proceedings of the IEEE Military Communications Conference (MILCOM-2006), pp. 1ā€“7 (2006)

    Google ScholarĀ 

  6. Davarian, F., et al.: Improving small satellite communications and tracking in deep space - a review of the existing systems and technologies with recommendations for improvement. part ii: small satellite navigation, proximity links, and communications link science. IEEE Aerosp. Electron. Syst. Mag. 35(7), 26ā€“40 (2020)

    ArticleĀ  Google ScholarĀ 

  7. Fall, K.: A delay-tolerant network architecture for challenged Internets. In: Proceedings of the International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 27ā€“34. SIGCOMM 2003 (2003)

    Google ScholarĀ 

  8. Fraire, J.A., Feldmann, M., Burleigh, S.C.: Benefits and challenges of cross-linked ring road satellite networks: a case study. In: Proceedings of the IEEE International Conference on Communications (ICC-2017), pp. 1ā€“7 (2017)

    Google ScholarĀ 

  9. Henkel, D., Brown, T.X.: Delay-tolerant communication using mobile robotic helper nodes. In: Proceedings of the 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops 2008, pp. 657ā€“666 (2008)

    Google ScholarĀ 

  10. Henmi, K., Koyama, A.: Hybrid type DTN routing protocol considering storage capacity. In: Barolli, L., Okada, Y., Amato, F. (eds.) EIDWT 2020. LNDECT, vol. 47, pp. 491ā€“502. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39746-3_50

    ChapterĀ  Google ScholarĀ 

  11. Iranmanesh, S., Raad, R., Raheel, M.S., Tubbal, F., Jan, T.: Novel DTN mobility-driven routing in autonomous drone logistics networks. IEEE Access 8, 13661ā€“13673 (2020)

    ArticleĀ  Google ScholarĀ 

  12. Liang, H., Gao, W., Nguyen, J.H., Orpilla, M.F., Yu, W.: Internet of things data collection using unmanned aerial vehicles in infrastructure free environments. IEEE Access 8, 3932ā€“3944 (2020)

    ArticleĀ  Google ScholarĀ 

  13. Nakasaki, S., Ikeda, M., Barolli, L.: A message relaying method with enhanced dynamic timer considering decrease rate of neighboring nodes for vehicular-DTN. In: Barolli, L., Hellinckx, P., Enokido, T. (eds.) BWCCA 2019. LNNS, vol. 97, pp. 711ā€“720. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33506-9_65

    ChapterĀ  Google ScholarĀ 

  14. Ramanathan, R., Hansen, R., Basu, P., Hain, R.R., Krishnan, R.: Prioritized epidemic routing for opportunistic networks. In: Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking (MobiOpp 2007), pp. 62ā€“66 (2007)

    Google ScholarĀ 

  15. RĆ¼sch, S., SchĆ¼rmann, D., Kapitza, R., Wolf, L.: Forward secure delay-tolerant networking. In: Proceedings of the 12th Workshop on Challenged Networks (CHANTS-2017), pp. 7ā€“12 (2017)

    Google ScholarĀ 

  16. Scenargie, N.S.: Space-time engineering, LLC. http://www.spacetime-eng.com/

  17. Solpico, D., et al.: Application of the V-HUB standard using LoRa beacons, mobile cloud, UAVs, and DTN for disaster-resilient communications. In: Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC-2019), pp. 1ā€“8 (2019)

    Google ScholarĀ 

  18. Sugihara, K., Hayashibara, N.: Message delivery of nomadic lĆ©vy walk based message ferry routing in delay tolerant networks. In: Barolli, L., Hussain, F., Enokido, T. (eds.) AINA 2022. Lecture Notes in Networks and Systems, vol. 449, pp. 259ā€“270. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99584-3_23

  19. Tada, Y., Ikeda, M., Barolli, L.: Performance evaluation of a message relaying method for resilient disaster networks. In: Barolli, L., Takizawa, M., Enokido, T., Chen, H.-C., Matsuo, K. (eds.) BWCCA 2020. LNNS, vol. 159, pp. 1ā€“10. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61108-8_1

    ChapterĀ  Google ScholarĀ 

  20. Uchimura, S., Azuma, M., Tada, Y., Ikeda, M., Barolli, L.: An adaptive anti-packet recovery method for vehicular DTN considering message possession rate. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021. LNNS, vol. 225, pp. 92ā€“101. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75100-5_9

    ChapterĀ  Google ScholarĀ 

  21. Vahdat, A., Becker, D.: Epidemic routing for partially-connected ad hoc networks. Duke University, Technical report (2000)

    Google ScholarĀ 

  22. Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., Wissler, S.: Disruption tolerant networking flight validation experiment on NASAā€™s EPOXI mission. In: Proceedings of the 1st International Conference on Advances in Satellite and Space Communications (SPACOMM-2009), pp. 187ā€“196 (2009)

    Google ScholarĀ 

  23. Yasmeen, F., Huda, N., Yamada, S., Borcea, C.: Ferry access points and sticky transfers: Improving communication in ferry-assisted DTNs. In: Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM-2012), pp. 1ā€“7 (2012)

    Google ScholarĀ 

  24. Zhao, W., Ammar, M., Zegura, E.: Controlling the mobility of multiple data transport ferries in a delay-tolerant network. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 1407ā€“1418 (2005)

    Google ScholarĀ 

  25. Zhao, W., Ammar, M.: Message ferrying: proactive routing in highly-partitioned wireless ad hoc networks. In: The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems, 2003. FTDCS 2003. Proceedings, pp. 308ā€“314 (2003)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uchimura, S., Azuma, M., Ikeda, M., Barolli, L. (2022). An Enhanced Adaptive Anti-packet Recovery Method forĀ Inter-vehicle Communications. In: Barolli, L., Miwa, H., Enokido, T. (eds) Advances in Network-Based Information Systems. NBiS 2022. Lecture Notes in Networks and Systems, vol 526. Springer, Cham. https://doi.org/10.1007/978-3-031-14314-4_38

Download citation

Publish with us

Policies and ethics