Skip to main content

Synthetic Data in Automatic Number Plate Recognition

  • Conference paper
  • First Online:
Database and Expert Systems Applications - DEXA 2022 Workshops (DEXA 2022)

Abstract

Machine learning has proven to be an enormous asset in industrial settings time and time again. While these methods are responsible for some of the most impressive technical advancements in recent years, machine learning and in particular deep learning, still heavily rely on big datasets, containing all the necessary information to learn a particular task. However, the procurement of useful data often imposes costly adjustments in production in case of internal collection, or has copyright implications in case of external collection. In some cases, the collection fails due to insufficient data quality, or simply availability. Moreover, privacy can be an ethical as well as a legal concern. A promising approach that deals with all of these challenges is to artificially generate data. Unlike real-world data, purely synthetic data does not prompt privacy considerations, allows for better quality control, and in many cases the number of synthetic datapoints is theoretically unlimited. In this work, we explore the utility of synthetic data in industrial settings by outlining several use-cases in the field of Automatic Number Plate Recognition. In all cases synthetic data has the potential of improving the results of the respective deep learning algorithms, substantially reducing the time and effort of data acquisition and preprocessing, and eliminating privacy concerns in a field as sensitive as Automatic Number Plate Recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.atlassian.com/software/confluence.

References

  1. Cabon, Y., Murray, N., Humenberger, M.: Virtual kitti 2. arXiv preprint arXiv:2001.10773 (2020)

  2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference On Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  3. Gokaslan, A., Ramanujan, V., Ritchie, D., Kim, K.I., Tompkin, J.: Improving shape deformation in unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 662–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_40

    Chapter  Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in neural information processing systems, vol. 27 (2014)

    Google Scholar 

  5. Han, B.G., Lee, J.T., Lim, K.T., Choi, D.H.: License plate image generation using generative adversarial networks for end-to-end license plate character recognition from a small set of real images. Appl. Sci. 10(8), 2780 (2020)

    Google Scholar 

  6. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks?. arXiv preprint arXiv:1610.01983 (2016)

  7. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  8. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Tech. rep. (2009)

    Google Scholar 

  9. Laroca, R., et al.: A robust real-time automatic license plate recognition based on the yolo detector. In: 2018 International Joint Conference on Neural Networks (ijcnn), pp. 1–10. IEEE (2018)

    Google Scholar 

  10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  11. Maltsev, A., Lebedev, R., Khanzhina, N.: On realistic generation of new format license plate on vehicle images. Proc. Comput. Sci. 193, 190–199 (2021)

    Article  Google Scholar 

  12. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  13. Nikolenko, S.I.: Synthetic Data for Deep Learning. SOIA, vol. 174. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75178-4

    Book  Google Scholar 

  14. Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2213–2222 (2017)

    Google Scholar 

  15. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)

    Google Scholar 

  16. Rosebrock, A.: Opencv: Automatic license/number plate recognition (anpr) with python (2015). https://pyimagesearch.com/2020/09/21/opencv-automatic-license-number-plate-recognition-anpr-with-python

  17. Saleh, F.S., Aliakbarian, M.S., Salzmann, M., Petersson, L., Alvarez, J.M.: Effective use of synthetic data for urban scene semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 86–103. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_6

    Chapter  Google Scholar 

  18. Sharma, M., Verma, A., Vig, L.: Learning to clean: a GAN perspective. In: Carneiro, G., You, S. (eds.) ACCV 2018. LNCS, vol. 11367, pp. 174–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21074-8_14

    Chapter  Google Scholar 

  19. Tripathi, S., Chandra, S., Agrawal, A., Tyagi, A., Rehg, J.M., Chari, V.: Learning to generate synthetic data via compositing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 461–470 (2019)

    Google Scholar 

  20. Wang, X., Man, Z., You, M., Shen, C.: Adversarial generation of training examples: applications to moving vehicle license plate recognition. arXiv preprint arXiv:1707.03124 (2017)

  21. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Brunner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brunner, D., Schmid, F. (2022). Synthetic Data in Automatic Number Plate Recognition. In: Kotsis, G., et al. Database and Expert Systems Applications - DEXA 2022 Workshops. DEXA 2022. Communications in Computer and Information Science, vol 1633. Springer, Cham. https://doi.org/10.1007/978-3-031-14343-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14343-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14342-7

  • Online ISBN: 978-3-031-14343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics