Skip to main content

Battling the Bullwhip Effect with Cryptography

  • Conference paper
  • First Online:
Database and Expert Systems Applications - DEXA 2022 Workshops (DEXA 2022)

Abstract

In real-world supply chains it is often observed that orders placed with suppliers tend to fluctuate more than sales to customers and that this deviation builds up in the upstream direction of the supply chain. This bullwhip effect arises because local decision-making based on orders of the immediate customer leads to overreaction. Literature shows that supply chain wide sharing of order or inventory information can help to stabilize the system and reduce inventories and stockouts. However, sharing this information can make a stakeholder vulnerable in other areas like the bargaining over prices. To overcome this dilemma we propose the usage of cryptographic methods like secure multiparty computation or homomorphic encryption to compute and share average order/inventory levels without leaking of sensitive data of individual actors. Integrating this information into the stylized beer game supply chain model, we show that the bullwhip effect is reduced also under this limited information sharing. Besides presenting results regarding the savings in supply chain costs achieved, we describe how blockchain technology can be used to implement such a novel supply chain management system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, H.L., Padmanabhan, V., Whang, S.: Information distortion in a supply chain: the bullwhip effect. Manage. Sci. 43(4), 546–558 (1997)

    Article  Google Scholar 

  2. Cramer, R., Damgard, I.B., Nielsen, J.B.: Secure Multiparty Computation and Secret Sharing. Cambridge University Press, New York (2015)

    Book  Google Scholar 

  3. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption schemes: theory and implementation. ACM Comput. Surv. 51(4), 1–35 (2018)

    Article  Google Scholar 

  4. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  5. Sterman, J.D.: Teaching takes off - flight simulators for management education - “The Beer Game”. OR/MS Today, pp. 40–44 (October 1992)

    Google Scholar 

  6. Forrester, J.W.: Industrial dynamics - a major breakthrough for decision makers. Harv. Bus. Rev. 36(4), 37–66 (1958)

    Google Scholar 

  7. Chen, F., Drezner, Z., Ryan, J.K., Simchi-Levi, D.: Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information. Manage. Sci. 46(3), 436–443 (2000)

    Article  Google Scholar 

  8. Croson, R., Donohue, K.: Upstream versus downstream information and its impact on the bullwhip effect. Syst. Dyn. Rev. 21(3), 249–260 (2005)

    Article  Google Scholar 

  9. Dejonckheere, J., Disney, S.M., Lambrecht, M.R., Towill, D.R.: Measuring and avoiding the bullwhip effect: a control theoretic approach. Eur. J. Oper. Res. 147, 567–590 (2003)

    Article  Google Scholar 

  10. Zhu, Z., Lambotharan, S., Chin, W.H., Fan, Z.: A mean field game theoretic approach to electric vehicles charging. IEEE Access 4, 3501–3510 (2016)

    Article  Google Scholar 

  11. Yang, P., Freeman, R.A., Lynch, K.M.: Multi-agent coordination by decentralized estimation and control. IEEE Trans. Autom. Control 53(11), 2480–2496 (2008)

    Article  MathSciNet  Google Scholar 

  12. Kia, S.S., Van Scoy, B., Cortes, J., Freeman, R.A., Lynch, K.M., Martinez, S.: Tutorial on dynamic average consensus: the problem, its applications, and the algorithms. IEEE Control Syst. Mag. 39(3), 40–72 (2019)

    Article  MathSciNet  Google Scholar 

  13. Zargham, M., Ribeiro, A., Jadbabaie, A.: Discounted integral priority routing for data networks. In: 2014 IEEE Global Communications Conference (2014)

    Google Scholar 

  14. Kerschbaum, F., et al.: Secure collaborative supply-chain management. Computer 44(9), 38–43 (2011)

    Article  Google Scholar 

  15. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15497-3_9

    Chapter  Google Scholar 

  16. Albrecht, M., Stadtler, H.: Coordinating decentralized linear programs by exchange of primal information. Eur. J. Oper. Res. 247(3), 788–796 (2015)

    Article  MathSciNet  Google Scholar 

  17. Pibernik, R., Zhang, Y., Kerschbaum, F., Schroepfer, A.: Secure collaborative supply chain planning and inverse optimization - the JELS model. Eur. J. Oper. Res. 208(1), 75–85 (2011)

    Article  MathSciNet  Google Scholar 

  18. van Engelenburg, S., Janssen, M., Klievink, B.: A blockchain architecture for reducing the bullwhip effect. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 69–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94214-8_5

    Chapter  Google Scholar 

  19. Ghode, D.J., Yadav, V., Jain, R., Soni, G.: Lassoing the bullwhip effect by applying blockchain to supply chains. J. Glob. Oper. Strateg. Sourcing 15(1), 96–114 (2022)

    Article  Google Scholar 

  20. Sarfaraz, A., Chakrabortty, R.K., Essam, D.L.: A blockchain-coordinated supply chain to minimize bullwhip effect with an enhanced trust consensus algorithm. Preprints (2021)

    Google Scholar 

  21. Zhong, H., Sang, Y., Zhang, Y., Xi, Z.: Secure multi-party computation on blockchain: an overview. In: Shen, H., Sang, Y. (eds.) PAAP 2019. CCIS, vol. 1163, pp. 452–460. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2767-8_40

    Chapter  Google Scholar 

  22. Lee, H.L., Kut, C.S., Tang, C.S.: The value of information sharing in a two-level supply chain. Manage. Sci. 46(5), 626–643 (2000)

    Article  Google Scholar 

  23. Damiani, E., Frati, F., Tchokpon, R.: The role of information sharing in supply chain management: the secure SCM approach. Int. J. Innov. Technol. Manag. 8(3), 455–467 (2013)

    Article  Google Scholar 

  24. Chatfield, D.C., Kim, J.G., Harrison, T.P., Hayy, J.C.: The bullwhip effect - impact of stochastic lead time, information quality, and information sharing: a simulation study. Prod. Oper. Manage. 13(4), 340–353 (2004)

    Article  Google Scholar 

  25. Borshchev, A.: The Big Book of Simulation Modeling: Multimethod Modeling with AnyLogic 6. AnyLogic North America, Chicago (2013)

    Google Scholar 

  26. AnyLogic: AnyLogic Timeline - Anylogic 7.2. https://www.anylogic.com/features/timeline/. Accessed 13 Apr 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hrušovský .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hrušovský, M., Taudes, A. (2022). Battling the Bullwhip Effect with Cryptography. In: Kotsis, G., et al. Database and Expert Systems Applications - DEXA 2022 Workshops. DEXA 2022. Communications in Computer and Information Science, vol 1633. Springer, Cham. https://doi.org/10.1007/978-3-031-14343-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14343-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14342-7

  • Online ISBN: 978-3-031-14343-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics