Abstract
In real-world supply chains it is often observed that orders placed with suppliers tend to fluctuate more than sales to customers and that this deviation builds up in the upstream direction of the supply chain. This bullwhip effect arises because local decision-making based on orders of the immediate customer leads to overreaction. Literature shows that supply chain wide sharing of order or inventory information can help to stabilize the system and reduce inventories and stockouts. However, sharing this information can make a stakeholder vulnerable in other areas like the bargaining over prices. To overcome this dilemma we propose the usage of cryptographic methods like secure multiparty computation or homomorphic encryption to compute and share average order/inventory levels without leaking of sensitive data of individual actors. Integrating this information into the stylized beer game supply chain model, we show that the bullwhip effect is reduced also under this limited information sharing. Besides presenting results regarding the savings in supply chain costs achieved, we describe how blockchain technology can be used to implement such a novel supply chain management system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lee, H.L., Padmanabhan, V., Whang, S.: Information distortion in a supply chain: the bullwhip effect. Manage. Sci. 43(4), 546–558 (1997)
Cramer, R., Damgard, I.B., Nielsen, J.B.: Secure Multiparty Computation and Secret Sharing. Cambridge University Press, New York (2015)
Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption schemes: theory and implementation. ACM Comput. Surv. 51(4), 1–35 (2018)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Sterman, J.D.: Teaching takes off - flight simulators for management education - “The Beer Game”. OR/MS Today, pp. 40–44 (October 1992)
Forrester, J.W.: Industrial dynamics - a major breakthrough for decision makers. Harv. Bus. Rev. 36(4), 37–66 (1958)
Chen, F., Drezner, Z., Ryan, J.K., Simchi-Levi, D.: Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information. Manage. Sci. 46(3), 436–443 (2000)
Croson, R., Donohue, K.: Upstream versus downstream information and its impact on the bullwhip effect. Syst. Dyn. Rev. 21(3), 249–260 (2005)
Dejonckheere, J., Disney, S.M., Lambrecht, M.R., Towill, D.R.: Measuring and avoiding the bullwhip effect: a control theoretic approach. Eur. J. Oper. Res. 147, 567–590 (2003)
Zhu, Z., Lambotharan, S., Chin, W.H., Fan, Z.: A mean field game theoretic approach to electric vehicles charging. IEEE Access 4, 3501–3510 (2016)
Yang, P., Freeman, R.A., Lynch, K.M.: Multi-agent coordination by decentralized estimation and control. IEEE Trans. Autom. Control 53(11), 2480–2496 (2008)
Kia, S.S., Van Scoy, B., Cortes, J., Freeman, R.A., Lynch, K.M., Martinez, S.: Tutorial on dynamic average consensus: the problem, its applications, and the algorithms. IEEE Control Syst. Mag. 39(3), 40–72 (2019)
Zargham, M., Ribeiro, A., Jadbabaie, A.: Discounted integral priority routing for data networks. In: 2014 IEEE Global Communications Conference (2014)
Kerschbaum, F., et al.: Secure collaborative supply-chain management. Computer 44(9), 38–43 (2011)
Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15497-3_9
Albrecht, M., Stadtler, H.: Coordinating decentralized linear programs by exchange of primal information. Eur. J. Oper. Res. 247(3), 788–796 (2015)
Pibernik, R., Zhang, Y., Kerschbaum, F., Schroepfer, A.: Secure collaborative supply chain planning and inverse optimization - the JELS model. Eur. J. Oper. Res. 208(1), 75–85 (2011)
van Engelenburg, S., Janssen, M., Klievink, B.: A blockchain architecture for reducing the bullwhip effect. In: Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 69–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94214-8_5
Ghode, D.J., Yadav, V., Jain, R., Soni, G.: Lassoing the bullwhip effect by applying blockchain to supply chains. J. Glob. Oper. Strateg. Sourcing 15(1), 96–114 (2022)
Sarfaraz, A., Chakrabortty, R.K., Essam, D.L.: A blockchain-coordinated supply chain to minimize bullwhip effect with an enhanced trust consensus algorithm. Preprints (2021)
Zhong, H., Sang, Y., Zhang, Y., Xi, Z.: Secure multi-party computation on blockchain: an overview. In: Shen, H., Sang, Y. (eds.) PAAP 2019. CCIS, vol. 1163, pp. 452–460. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2767-8_40
Lee, H.L., Kut, C.S., Tang, C.S.: The value of information sharing in a two-level supply chain. Manage. Sci. 46(5), 626–643 (2000)
Damiani, E., Frati, F., Tchokpon, R.: The role of information sharing in supply chain management: the secure SCM approach. Int. J. Innov. Technol. Manag. 8(3), 455–467 (2013)
Chatfield, D.C., Kim, J.G., Harrison, T.P., Hayy, J.C.: The bullwhip effect - impact of stochastic lead time, information quality, and information sharing: a simulation study. Prod. Oper. Manage. 13(4), 340–353 (2004)
Borshchev, A.: The Big Book of Simulation Modeling: Multimethod Modeling with AnyLogic 6. AnyLogic North America, Chicago (2013)
AnyLogic: AnyLogic Timeline - Anylogic 7.2. https://www.anylogic.com/features/timeline/. Accessed 13 Apr 2022
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hrušovský, M., Taudes, A. (2022). Battling the Bullwhip Effect with Cryptography. In: Kotsis, G., et al. Database and Expert Systems Applications - DEXA 2022 Workshops. DEXA 2022. Communications in Computer and Information Science, vol 1633. Springer, Cham. https://doi.org/10.1007/978-3-031-14343-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-14343-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14342-7
Online ISBN: 978-3-031-14343-4
eBook Packages: Computer ScienceComputer Science (R0)