Abstract
Semantic Web Machine Learning Systems (SWeMLS) characterise applications, which combine symbolic and subsymbolic components in innovative ways. Such hybrid systems are expected to benefit from both domains and reach new performance levels for complex tasks. While existing taxonomies in this field focus on building blocks and patterns for describing the interaction within the final systems, typical lifecycles describing the steps of the entire development process have not yet been introduced. Thus, we present our SWeMLS lifecycle framework, providing a unified view on Semantic Web, Machine Learning, and their interaction in a SWeMLS. We further apply the framework in a case study based on three systems, described in literature. This work should facilitate the understanding, planning, and communication of SWeMLS designs and process views.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The third lifecycle in a SWeMLS, being the Application lifecycle corresponds to the extensively discussed Software Development Lifecycle, which we will not discuss in the scope of this paper.
References
Ashmore, R., Calinescu, R., Paterson, C.: Assuring the machine learning lifecycle: desiderata, methods, and challenges. ACM CSUR 54(5), 1–39 (2021)
Ashraf, J., Chang, E., Hussain, O.K., Hussain, F.K.: Ontology usage analysis in the ontology lifecycle: a state-of-the-art review. Knowl.-Based Syst. 80, 34–47 (2015)
van Bekkum, M., de Boer, M., van Harmelen, F., Meyer-Vitali, A., Teije, A.: Modular design patterns for hybrid learning and reasoning systems. Appl. Intell. 51(9), 6528–6546 (2021). https://doi.org/10.1007/s10489-021-02394-3
Breit, A., et al.: Combining machine learning and semantic web -a systematic mapping study (under review). ACM CSUR
Chen, P., Wang, Y., Yu, Q., Fan, Y., Feng, R.: Hamming distance encoding multihop relation knowledge graph completion. IEEE Access 8, 117146–117158 (2020)
D’Amato, C.: Machine learning for the semantic web: lessons learnt and next research directions. Semant. Web 11(1), 195–203 (2020)
Driouche, R.: Towards ontology lifecycle: building, matching and evolution to semantically integrate application ontologies. Int. J. Comput. Appli. Technol. Res. 6, 109–116 (2017)
Fensel, D., et al.: Introduction: what is a knowledge graph? In: Knowledge Graphs, pp. 1–10. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37439-6_1
Garcia, N., Renoust, B., Nakashima, Y.: Context-aware embeddings for automatic art analysis. In: Proceedings of the 2019 on International Conference on Multimedia Retrieval, pp. 25–33 (2019)
Garcia, R., Sreekanti, V., Yadwadkar, N., Crankshaw, D., Gonzalez, J.E., Hellerstein, J.M.: Context: the missing piece in the machine learning lifecycle. In: KDD CMI Workshop, vol. 114 (2018)
Hitzler, P., Bianchi, F., Ebrahimi, M., Sarker, M.K.: Neural-symbolic integration and the Semantic Web. Semantic Web 11(1), 3–11 (2020). https://doi.org/10.3233/SW-190368
Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds.): Knowledge Graphs and Big Data Processing. LNCS, vol. 12072. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53199-7
Kautz, H.: The Third AI Summer, AAAI Robert S. Engelmore Memorial Lecture, Thirty-fourth AAAI Conference on Artificial Intelligence (2020)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
Luczak-Rösch, M., Heese, R.: Managing ontology lifecycles in corporate settings. In: Networked Knowledge-Networked Media, pp. 235–248. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-02184-8_16
Lukovnikov, D., Fischer, A., Lehmann, J.: Pretrained transformers for simple question answering over knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 470–486. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_27
Miao, H., Li, A., Davis, L.S., Deshpande, A.: Towards unified data and lifecycle management for deep learning. In: 2017 IEEE ICDE, pp. 571–582. IEEE (2017)
Ncr, P.C., et al.: Crisp-dm 1.0 (1999)
Ngomo, A.-C.N., Auer, S., Lehmann, J., Zaveri, A.: Introduction to linked data and its lifecycle on the web. In: Koubarakis, M., et al. (eds.) Reasoning Web 2014. LNCS, vol. 8714, pp. 1–99. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10587-1_1
Polyzotis, N., Roy, S., Whang, S.E., Zinkevich, M.: Data lifecycle challenges in production machine learning: a survey. ACM SIGMOD Rec. 47(2), 17–28 (2018)
Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a comprehensive survey. J. Web Semant. 36, 1–22 (2016)
Seeliger, A., Pfaff, M., Krcmar, H.: Semantic web technologies for explainable machine learning models: a literature review. In: Proceedings of the 1st Workshop on Semantic Explainability co-located with the 18th International Semantic Web Conference (ISWC 2019), vol. 2465, pp. 30–45 (2019)
Studer, S., et al.: Towards crisp-ml (q): a machine learning process model with quality assurance methodology. Mach. Learn. Knowl. Extr. 3(2), 392–413 (2021)
Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The NeOn methodology for ontology engineering. In: Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a Networked World, pp. 9–34. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24794-1_2
Wallaart, O., Frasincar, F.: A hybrid approach for aspect-based sentiment analysis using a lexicalized domain ontology and attentional neural models. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 363–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21348-0_24
Waltersdorfer, L., Breit, A., Ekaputra, F.J., Sabou, M.: Bridging semantic web and machine learning: first results of a systematic mapping study. In: Kotsis, G., et al. (eds.) DEXA 2021. CCIS, vol. 1479, pp. 81–90. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87101-7_9
Xu, B., et al.: Metic: multi-instance entity typing from corpus. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 903–912 (2018)
Funding and Acknowledgement
This work has been funded by the project OBARIS (https://www.obaris.org/), which has received funding from the Austrian Research Promotion Agency (FFG) under grant 877389.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Breit, A., Waltersdorfer, L., Ekaputra, F.J., Miksa, T., Sabou, M. (2022). A Lifecycle Framework for Semantic Web Machine Learning Systems. In: Kotsis, G., et al. Database and Expert Systems Applications - DEXA 2022 Workshops. DEXA 2022. Communications in Computer and Information Science, vol 1633. Springer, Cham. https://doi.org/10.1007/978-3-031-14343-4_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-14343-4_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14342-7
Online ISBN: 978-3-031-14343-4
eBook Packages: Computer ScienceComputer Science (R0)