Skip to main content

A Review: Sensors Used in Tool Wear Monitoring and Prediction

  • Conference paper
  • First Online:
Mobile Web and Intelligent Information Systems (MobiWIS 2022)

Abstract

Tool wear prediction/monitoring of CNCs is crucial for improving manufacturing efficiency, guaranteeing product quality, and minimizing tool costs. As a computer-aided application, it has a significant role in the future and development of Industry 4.0. Sensors are the key piece of hardware used by data-driven enterprises to predict/monitor tool wear. The purpose of this study is to inform about the predominant types of sensors used for tool wear monitoring/prediction. This study serves as a resource for researchers and manufacturers by providing the recent trends in sensors for tool wear monitoring. Thus, it may help reduce the time spent on sensor selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Javaid, M., et al.: Sensors for daily life: a review. Sens. Int. 2, 100121 (2021)

    Article  Google Scholar 

  2. IAzmi, A.I.: Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites. Adv. Eng. Softw. 82, 53–64 (2015)

    Google Scholar 

  3. Sharif Ullah, A.M.M.: Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0. Adv. Eng. Inform. 39, 1–13 (2019)

    Google Scholar 

  4. Mehta, S., et al.: Measurement and analysis of tool wear using vision system. In: 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA). IEEE (2019)

    Google Scholar 

  5. Pagani, L., Parenti, P., Cataldo, S., Scott, P.J., Annoni, M.: Indirect cutting tool wear classification using deep learning and chip colour analysis. Int. J. Adv. Manuf. Technol. 111(3–4), 1099–1114 (2020). https://doi.org/10.1007/s00170-020-06055-6

    Article  Google Scholar 

  6. Alhadeff, L.L., et al.: Protocol for tool wear measurement in micro-milling. Wear 420, 54–67 (2019)

    Article  Google Scholar 

  7. Yu, H., et al.: An improved tool wear monitoring method using local image and fractal dimension of workpiece. Math. Prob. Eng. 2021, 11 p. (2021). https://doi.org/10.1155/2021/9913581. Article ID 9913581

  8. Shen, Z.-A., et al.: Real-time estimation of machine cutting tool wear. J. Chin. Inst. Eng. 45, 1–14 (2022)

    Google Scholar 

  9. Kuntoğlu, M., Salur, E., Gupta, M.K., Sarıkaya, M., Pimenov, D.Y.: A state-of-the-art review on sensors and signal processing systems in mechanical machining processes. Int. J. Adv. Manuf. Technol. 116(9–10), 2711–2735 (2021). https://doi.org/10.1007/s00170-021-07425-4

    Article  Google Scholar 

  10. Sener, B., et al.: A novel chatter detection method for milling using deep convolution neural networks. Measurement 182, 109689 (2021)

    Google Scholar 

  11. Serin, G., Sener, B., Ozbayoglu, A.M., Unver, H.O.: Review of tool condition monitoring in machining and opportunities for deep learning. Int. J.Adv. Manuf. Technol. 109(3–4), 953–974 (2020). https://doi.org/10.1007/s00170-020-05449-w

    Article  Google Scholar 

  12. Seyrek, P., et al.: An evaluation study of EMD, EEMD, and VMD for chatter detection in milling. Procedia Comput. Sci. 200, 160–174 (2022)

    Google Scholar 

  13. Nath, C.: Integrated tool condition monitoring systems and their applications: a comprehensive review. Procedia Manuf. 48, 852–863 (2020)

    Article  Google Scholar 

  14. Tamang, S.K., Chandrasekaran, M., Sahoo, A.K.: Sustainable machining: an experimental investigation and optimization of machining Inconel 825 with dry and MQL approach. J. Braz. Soc. Mech. Sci. Eng. 40(8), 1–18 (2018). https://doi.org/10.1007/s40430-018-1294-2

    Article  Google Scholar 

  15. Kious, M., et al.: Influence of machining cycle of horizontal milling on the quality of cutting force measurement for the cutting tool wear monitoring. Prod. Eng. 2(4), 443–449 (2008)

    Google Scholar 

  16. Haber, R.E., et al.: An investigation of tool-wear monitoring in a high-speed machining process. Sens. Actuators A 116(3), 539–545 (2004)

    Google Scholar 

  17. Liang, Q., et al.: Methods and research for multi-component cutting force sensing devices and approaches in machining. Sensors 16(11), 1926 (2016)

    Google Scholar 

  18. Totis, G., Sortino, M.: Development of a modular dynamometer for triaxial cutting force measurement in turning. Int. J. Mach. Tools Manuf. 51(1), 34–42 (2011)

    Article  Google Scholar 

  19. Patra, K.: Acoustic emission based tool condition monitoring system in drilling. In: Proceedings of the World Congress on Engineering, vol. 3 (2011)

    Google Scholar 

  20. Snr, D.E.D.: Sensor signals for tool-wear monitoring in metal cutting operations—a review of methods. Int. J. Mach. Tools Manuf. 40(8), 1073–1098 (2000)

    Google Scholar 

  21. Li, X.: A brief review: acoustic emission method for tool wear monitoring during turning. Int. J. Mach. Tools Manuf. 42(2), 157–165 (2002)

    Article  Google Scholar 

  22. Arul, S., Vijayaraghavan, L., Malhotra, S.K.: Online monitoring of acoustic emission for quality control in drilling of polymeric composites. J. Mater. Process. Technol. 185(1–3), 184–190 (2007)

    Google Scholar 

  23. Hutton, D.V., Hu, F.: Acoustic emission monitoring of tool wear in end-milling using time-domain averaging. J. Manuf. Sci. Eng. 121, 8–12 (1999)

    Google Scholar 

  24. Gómez, M.P., et al.: Assessment of cutting tool condition by acoustic emission. Procedia Mater. Sci. 1, 321–328 (2012)

    Article  Google Scholar 

  25. Zhang, X., Wang, S., Li, W., Lu, X.: Heterogeneous sensors-based feature optimisation and deep learning for tool wear prediction. Int. J. Adv. Manuf. Technol. 114(9–10), 2651–2675 (2021). https://doi.org/10.1007/s00170-021-07021-6

    Article  Google Scholar 

  26. Feng, J., et al.: Tool wear monitoring for micro-end grinding of ceramic materials. J. Mater. Process. Technol. 209(11), 5110–5116 (2009)

    Article  Google Scholar 

  27. Zhou, J.-H., et al.: Tool wear monitoring using acoustic emissions by dominant-feature identification. IEEE Trans. Instrum. Meas. 60(2), 547–559 (2010)

    Google Scholar 

  28. Zhang, K.-F., Yuan, H.-Q., Nie, P.: A method for tool condition monitoring based on sensor fusion. J. Intell. Manuf. 26(5), 1011–1026 (2015). https://doi.org/10.1007/s10845-015-1112-y

    Article  Google Scholar 

  29. Alexandre, F.A., et al.: Tool condition monitoring of aluminum oxide grinding wheel using AE and fuzzy model. Int. J. Adv. Manuf. Technol. 96(1–4), 67–79 (2018). https://doi.org/10.1007/s00170-018-1582-0

    Article  Google Scholar 

  30. Moia, D.F.G., Thomazella, I.H., Aguiar, P.R., Bianchi, E.C., Martins, C.H.R., Marchi, M.: Tool condition monitoring of aluminum oxide grinding wheel in dressing operation using acoustic emission and neural networks. J. Braz. Soc. Mech. Sci. Eng. 37(2), 627–640 (2014). https://doi.org/10.1007/s40430-014-0191-6

    Article  Google Scholar 

  31. Hanachi, H., Yu, W., Kim, I.Y., Liu, J., Mechefske, C.K.: Hybrid data-driven physics-based model fusion framework for tool wear prediction. Int. J. Adv. Manuf. Technol. 101(9–12), 2861–2872 (2018). https://doi.org/10.1007/s00170-018-3157-5

    Article  Google Scholar 

  32. Prasad, B.S., Sarcar, M.M.M., Satish Ben, B.: Development of a system for monitoring tool condition using acousto-optic emission signal in face turning—an experimental approach. Int. J. Adv. Manuf. Technol. 51(1), 57–67 (2010)

    Google Scholar 

  33. Rajesh, S., et al.: Multi-response optimization of machining parameters on red mud-based aluminum metal matrix composites in turning process. Int. J. Adv. Manuf. Technol. 67(1), 811–821 (2013)

    Article  Google Scholar 

  34. Orhan, S., et al.: Tool wear evaluation by vibration analysis during end milling of AISI D3 cold work tool steel with 35 HRC hardness. NDT & E Int. 40(2), 121–126 (2007)

    Google Scholar 

  35. Zhou, M., et al.: Vibration-assisted precision machining of steel with PCD tools. Mater. Manuf. Processes 18(5), 825–834 (2003)

    Google Scholar 

  36. Abdullah, A., Shabgard, M.R.: Effect of ultrasonic vibration of tool on electrical discharge machining of cemented tungsten carbide (WC-Co). Int. J. Adv. Manuf. Technol. 38(11), 1137–1147 (2008)

    Article  Google Scholar 

  37. Cong, W.L., et al.: Vibration amplitude in rotary ultrasonic machining: a novel measurement method and effects of process variables. J. Manuf. Sci. Eng. 133(3), 034501 (2011)

    Google Scholar 

  38. Zhang, C., et al.: Tool condition monitoring and remaining useful life prognostic based on a wireless sensor in dry milling operations. Sensors 16(6), 795 (2016)

    Google Scholar 

  39. Guo, K., et al.: Development and testing of a wireless rotating triaxial vibration measuring tool holder system for milling process. Measurement 163, 108034 (2020)

    Google Scholar 

  40. Guo, K., Sun, J.: An integrated wireless vibration sensing tool holder for milling tool condition monitoring with singularity analysis. Measurement 174, 109038 (2021)

    Article  Google Scholar 

  41. Hassan, M., Sadek, A., Attia, M.H.: Novel sensor-based tool wear monitoring approach for seamless implementation in high speed milling applications. CIRP Ann. 70(1), 87–90 (2021)

    Article  Google Scholar 

  42. Zhang, B., Katinas, C., Shin, Y.C.: Robust tool wear monitoring using systematic feature selection in turning processes with consideration of uncertainties. J. Manuf. Sci. Eng. 140(8), 081010 (2018)

    Google Scholar 

  43. Sun, I.C., Cheng, R.C., Chen, K.S.: Evaluation of transducer signature selections on machine learning performance in cutting tool wear prognosis. Int. J. Adv. Manuf. Technol. 119, 6451–6468 (2022). https://doi.org/10.1007/s00170-021-08526-w

  44. Sun, I., Cheng, R.-C., Chen, K.-S.: Evaluation of transducer signature selections on machine learning performance in cutting tool wear prognosis. Int. J. Adv. Manuf. Technol. 119, 1–18 (2022)

    Google Scholar 

  45. Chen, B., et al.: Reliability estimation for cutting tools based on logistic regression model using vibration signals. Mech. Syst. Sig. Process. 25(7), 2526–2537 (2011)

    Google Scholar 

  46. Kuntoğlu, M., Sağlam, H.: Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Measurement 173, 108582 (2021)

    Article  Google Scholar 

  47. Duo, A., et al.: Drilling process monitoring: a framework for data gathering and feature extraction techniques. Procedia CIRP 99, 189–195 (2021)

    Google Scholar 

  48. Jemielniak, K., et al.: Tool condition monitoring based on numerous signal features. Int. J. Adv. Manuf. Technol. 59(1), 73–81 (2012)

    Google Scholar 

  49. Niu, B., Sun, J., Yang, B.: Multisensory based tool wear monitoring for practical applications in milling of titanium alloy. Mater. Today Proc. 22, 1209–1217 (2020)

    Article  Google Scholar 

  50. Lamraoui, M.E.B.M., Thomas, M., El Badaoui, M.: Cyclostationarity approach for monitoring chatter and tool wear in high speed milling. Mech. Syst. Sig. Process. 44(1–2), 177–198 (2014)

    Article  Google Scholar 

  51. Scheffer, C., Heyns, P.S.: Wear monitoring in turning operations using vibration and strain measurements. Mech. Syst. Signal Process. 15(6), 1185–1202 (2001)

    Article  Google Scholar 

  52. Gomes, M.C., et al.: Tool wear monitoring in micromilling using support vector machine with vibration and sound sensors. Precis. Eng. 67, 137–151 (2021)

    Google Scholar 

  53. Ai, C.S., et al.: The milling tool wear monitoring using the acoustic spectrum. Int. J. Adv. Manuf. Technol. 61(5), 457–463 (2012)

    Article  Google Scholar 

  54. Shankar, S., Mohanraj, T., Rajasekar, R.: Prediction of cutting tool wear during milling process using artificial intelligence techniques. Int. J. Comput. Integr. Manuf. 32(2), 174–182 (2019)

    Google Scholar 

  55. Seemuang, N., McLeay, T., Slatter, T.: Using spindle noise to monitor tool wear in a turning process. Int. J. Adv. Manuf. Technol. 86(9–12), 2781–2790 (2016). https://doi.org/10.1007/s00170-015-8303-8

    Article  Google Scholar 

  56. Ubhayaratne, I., et al.: Audio signal analysis for tool wear monitoring in sheet metal stamping. Mech. Syst. Sig. Process. 85, 809–826 (2017)

    Google Scholar 

  57. Kothuru, A., Nooka, S.P., Liu, R.: Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling. Int. J. Adv. Manuf. Technol. 95(9–12), 3797–3808 (2017). https://doi.org/10.1007/s00170-017-1460-1

    Article  Google Scholar 

  58. Ravikumar, S., Ramachandran, K.I.: Tool wear monitoring of multipoint cutting tool using sound signal features signals with machine learning techniques. Mater. Today Proc. 5(11), 25720–25729 (2018)

    Article  Google Scholar 

  59. Aliustaoglu, C., Metin Ertunc, H., Ocak, H.: Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mech. Syst. Sig. Process. 23(2), 539–546 (2009)

    Google Scholar 

  60. Silva, R.G., et al.: The adaptability of a tool wear monitoring system under changing cutting conditions. Mech. Syst. Sig. Process. 14(2), 287–298 (2000)

    Article  Google Scholar 

  61. Lin, Y.‐R., Lee, C.‐H., Lu, M.‐C.: Robust tool wear monitoring system development by sensors and feature fusion. Asian J. Control 24, 1005–1021 (2022)

    Google Scholar 

  62. Alonso, F.J., Salgado, D.R.: Application of singular spectrum analysis to tool wear detection using sound signals. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 219(9), 703–710 (2005)

    Article  Google Scholar 

  63. Li, Z., Liu, R., Dazhong, W.: Data-driven smart manufacturing: tool wear monitoring with audio signals and machine learning. J. Manuf. Process. 48, 66–76 (2019)

    Article  Google Scholar 

  64. Salgado, D.R., Alonso, F.J.: An approach based on current and sound signals for in-process tool wear monitoring. Int. J. Mach. Tools Manuf. 47(14), 2140–2152 (2007)

    Article  Google Scholar 

  65. Huda, F., Karjuni, K., Rusli, M.: Cutting tool wear analysis using sound signal and simple microphone. IOP Conf. Ser. Mater. Sci. Eng. 830(4), 042028 (2020)

    Google Scholar 

  66. Uekita, M., Takaya, Y.: Tool condition monitoring for form milling of large parts by combining spindle motor current and acoustic emission signals. Int. J. Adv. Manuf. Technol. 89(1–4), 65–75 (2016). https://doi.org/10.1007/s00170-016-9082-6

    Article  Google Scholar 

  67. Zhang, X.Y., et al.: A multi-sensor based online tool condition monitoring system for milling process. Procedia CIRP 72, 1136–1141 (2018)

    Article  Google Scholar 

  68. Feng, T., et al.: A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring. Int. J. Adv. Manuf. Technol. 120, 1–16 (2022)

    Google Scholar 

  69. Zhang, X.: Deep learning driven tool wear identification and remaining useful life prediction. Dissertation, Coventry University (2020)

    Google Scholar 

  70. Ou, J., et al.: A novel order analysis and stacked sparse auto-encoder feature learning method for milling tool wear condition monitoring. Sensors 20(10), 2878 (2020)

    Google Scholar 

  71. Tang, J., Li, W.X., Zhao, B.: The application of GA-BP algorithm in prediction of tool wear state. IOP Conf. Ser. Mater. Sci. Eng. 398(1), 012025 (2018)

    Google Scholar 

  72. da Silva, R.H.L., da Silva, M.B., Hassui, A.: A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals. Mach. Sci. Technol. 20(3), 386–405 (2016)

    Google Scholar 

  73. Lin, S.C., Lin, R.J.: Tool wear monitoring in face milling using force signals. Wear 198(1–2), 136–142 (1996)

    Article  Google Scholar 

  74. Wang, G., et al.: Tool wear monitoring based on cointegration modelling of multisensory information. Int. J. Comput. Integr. Manuf. 27(5), 479–487 (2014)

    Google Scholar 

  75. Chen, J.C., Chen, J.C.: An artificial-neural-networks-based in-process tool wear prediction system in milling operations. Int. J. Adv. Manuf. Technol. 25(5), 427–434 (2005)

    Article  Google Scholar 

  76. Ertunc, H.M., Oysu, C.: Drill wear monitoring using cutting force signals. Mechatronics 14(5), 533–548 (2004)

    Google Scholar 

  77. Chen, J.C., Susanto, V.: Fuzzy logic based in-process tool-wear monitoring system in face milling operations. Int. J. Adv. Manuf. Technol. 21(3), 186–192 (2003)

    Article  Google Scholar 

  78. Karandikar, J., et al.: Tool wear monitoring using naive Bayes classifiers. Int. J. Adv. Manuf. Technol. 77(9), 1613–1626 (2015)

    Google Scholar 

  79. Patra, K., et al.: Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals. Precis. Eng. 48, 279–291 (2017)

    Article  Google Scholar 

  80. Kene, A.P., Choudhury, S.K.: Analytical modeling of tool health monitoring system using multiple sensor data fusion approach in hard machining. Measurement 145, 118–129 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perin Ünal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ünal, P., Deveci, B.U., Özbayoğlu, A.M. (2022). A Review: Sensors Used in Tool Wear Monitoring and Prediction. In: Awan, I., Younas, M., Poniszewska-Marańda, A. (eds) Mobile Web and Intelligent Information Systems. MobiWIS 2022. Lecture Notes in Computer Science, vol 13475. Springer, Cham. https://doi.org/10.1007/978-3-031-14391-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14391-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14390-8

  • Online ISBN: 978-3-031-14391-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics