Abstract
A precise and real-time object detection system is crucial to ensuring the safety, smoothness, and trust of Autonomous Vehicles (AVs). Several machine learning techniques have been designed to improve vehicle detection capabilities and reduce the shortcomings caused by limited data and by transferring these data to a central server, which has shown poor performance under different conditions. In this paper, we propose an active federated learning-integrated solution over AVs that capitalizes on the You Only Learn One Representation (YOLOR) approach, a Convolutional Neural Network (CNN) specifically designed for real-time object detection. Our approach combines implicit and explicit knowledge, together with active learning and federated learning with the aim of improving the detection accuracy. Experiments show that our solution achieves better performance than traditional solutions (i.e., Gossip decentralized model and Centralized model).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Amiri, M.M., Gunduz, D.: Machine learning at the wireless edge: distributed stochastic gradient descent over-the-air. IEEE Trans. Sig. Process. 68, 2155–2169 (2020)
Bataineh, A.S., Bentahar, J., Mizouni, R., Wahab, O.A., Rjoub, G., El Barachi, M.: Cloud computing as a platform for monetizing data services: a two-sided game business model. IEEE Trans. Netw. Serv. Manage. (2021). https://doi.org/10.1109/TNSM.2021.3128160
Bentahar, J., Drawel, N., Sadiki, A.: Quantitative group trust: a two-stage verification approach. In: Faliszewski, P., Mascardi, V., Pelachaud, C., Taylor, M.E. (eds.) 21st International Conference on Autonomous Agents and Multiagent Systems, AAMAS, Auckland, New Zewland, 9–13 May, pp. 100–108. International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS) (2022)
Bentahar, J., Meyer, J.C., Wan, W.: Model checking communicative agent-based systems. Knowl. Based Syst. 22(3), 142–159 (2009)
Bommel, J.R.V.: Active learning during federated learning for object detection, July 2021. http://essay.utwente.nl/86855/
Brust, C.A., Käding, C., Denzler, J.: Active Learning for Deep Object Detection. arXiv:1809.09875 [cs], September 2018. http://arxiv.org/abs/1809.09875, arXiv: 1809.09875
Carranza-García, M., Lara-Benítez, P., García-Gutiérrez, J., Riquelme, J.C.: Enhancing object detection for autonomous driving by optimizing anchor generation and addressing class imbalance. Neurocomputing 449, 229–244 (2021)
Culotta, A., McCallum, A.: Reducing labeling effort for structured prediction tasks. In: Proceedings of the 20th national conference on Artificial intelligence, vol. 2, pp. 746–751. AAAI 2005, AAAI Press, Pittsburgh, Pennsylvania, July 2005
Drawel, N., Bentahar, J., Laarej, A., Rjoub, G.: Formal verification of group and propagated trust in multi-agent systems. Auton. Agent. Multi-Agent Syst. 36(1), 1–31 (2022)
El-Menshawy, M., Bentahar, J., Dssouli, R.: Symbolic model checking commitment protocols using reduction. In: Omicini, A., Sardina, S., Vasconcelos, W. (eds.) DALT 2010. LNCS (LNAI), vol. 6619, pp. 185–203. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20715-0_11
Guo, J., Carrillo, D., Tang, S., Chen, Q., Yang, Q., Fu, S., Wang, X., Wang, N., Palacharla, P.: Coff: cooperative spatial feature fusion for 3-d object detection on autonomous vehicles. IEEE Internet Things J. 8(14), 11078–11087 (2021)
Han, J., et al.: SODA10M: a large-scale 2D self/Semi-supervised object detection dataset for autonomous driving. arXiv:2106.11118 [cs], November 2021. http://arxiv.org/abs/2106.11118, arXiv: 2106.11118
Jhung, J., Bae, I., Moon, J., Kim, T., Kim, J., Kim, S.: End-to-end steering controller with CNN-based closed-loop feedback for autonomous vehicles. In: 2018 IEEE intelligent vehicles symposium (IV), pp. 617–622. IEEE (2018)
Jiang, T., Fang, H., Wang, H.: Blockchain-based internet of vehicles: distributed network architecture and performance analysis. IEEE Internet Things J. 6(3), 4640–4649 (2018)
Kim, S.W., Ko, K., Ko, H., Leung, V.C.: Edge-network-assisted real-time object detection framework for autonomous driving. IEEE Network 35(1), 177–183 (2021)
Li, Y., Tao, X., Zhang, X., Liu, J., Xu, J.: Privacy-preserved federated learning for autonomous driving. IEEE Trans. Intell. Transp. Syst. 23(7), 8423–8434 (2022)
Posner, J., Tseng, L., Aloqaily, M., Jararweh, Y.: Federated learning in vehicular networks: opportunities and solutions. IEEE Network 35(2), 152–159 (2021)
Rjoub, G., Abdel Wahab, O., Bentahar, J., Bataineh, A.: A trust and energy-aware double deep reinforcement learning scheduling strategy for federated learning on IoT devices. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol. 12571, pp. 319–333. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65310-1_23
Rjoub, G., Bentahar, J., Abdel Wahab, O., Saleh Bataineh, A.: Deep and reinforcement learning for automated task scheduling in large-scale cloud computing systems. Concurrency Comput. Pract. Experience 33(23), e5919 (2021)
Rjoub, G., Bentahar, J., Wahab, O.A.: Bigtrustscheduling: trust-aware big data task scheduling approach in cloud computing environments. Future Gener. Comput. Syst. 110, 1079–1097 (2020)
Rjoub, G., Bentahar, J., Wahab, O.A., Bataineh, A.: Deep smart scheduling: a deep learning approach for automated big data scheduling over the cloud. In: 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 189–196. IEEE (2019)
Rjoub, G., Wahab, O.A., Bentahar, J., Bataineh, A.: Trust-driven reinforcement selection strategy for federated learning on IoT devices. Computing (2022). https://doi.org/10.1007/s00607-022-01078-1
Rjoub, G., Wahab, O.A., Bentahar, J., Bataineh, A.S.: Improving autonomous vehicles safety in snow weather using federated YOLO CNN learning. In: Bentahar, J., Awan, I., Younas, M., Grønli, T.-M. (eds.) MobiWIS 2021. LNCS, vol. 12814, pp. 121–134. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83164-6_10
Tian, Z., Gao, X., Su, S., Qiu, J., Du, X., Guizani, M.: Evaluating reputation management schemes of internet of vehicles based on evolutionary game theory. IEEE Trans. Veh. Technol. 68(6), 5971–5980 (2019)
Vanitha, V., Resmi, R., Reddy, K.N.S.V.: Machine learning-based charge scheduling of electric vehicles with minimum waiting time. Comput. Intell. 37(3), 1047–1055 (2021)
Wahab, O.A., Cohen, R., Bentahar, J., Otrok, H., Mourad, A., Rjoub, G.: An endorsement-based trust bootstrapping approach for newcomer cloud services. Inf. Sci. 527, 159–175 (2020)
Wahab, O.A., Mourad, A., Otrok, H., Taleb, T.: Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems. IEEE Commun. Surv. Tutorials 23(2), 1342–1397 (2021)
Wahab, O.A., Rjoub, G., Bentahar, J., Cohen, R.: Federated against the cold: a trust-based federated learning approach to counter the cold start problem in recommendation systems. Inf. Sci. 601, 189–206 (2022)
Wei, J., He, J., Zhou, Y., Chen, K., Tang, Z., Xiong, Z.: Enhanced object detection with deep convolutional neural networks for advanced driving assistance. IEEE Trans. intell. Transp. Syst. 21(4), 1572–1583 (2019)
Xu, Y., Lin, J., Gao, H., Li, R., Jiang, Z., Yin, Y., Wu, Y.: Machine learning-driven apps recommendation for energy optimization in green communication and networking for connected and autonomous vehicles. IEEE Trans. Green Commun. Networking (2022). https://doi.org/10.1109/TGCN.2022.3165262
Yang, Q., Fu, S., Wang, H., Fang, H.: Machine-learning-enabled cooperative perception for connected autonomous vehicles: Challenges and opportunities. IEEE Network 35(3), 96–101 (2021)
Ye, D., Yu, R., Pan, M., Han, Z.: Federated learning in vehicular edge computing: a selective model aggregation approach. IEEE Access 8, 23920–23935 (2020)
Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., Hossain, M.S.: Mobility-aware proactive edge caching for connected vehicles using federated learning. IEEE Trans. Intell. Transp. Syst. 22(8), 5341–5351 (2020)
Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., Hossain, M.S.: Mobility-aware proactive edge caching for connected vehicles using federated learning. IEEE Trans. Intell. Transp. Syst. 22(8), 5341–5351 (2021). https://doi.org/10.1109/TITS.2020.3017474
Zhang, J., Zhao, Y., Wang, J., Chen, B.: FedMEC: improving efficiency of differentially private federated learning via mobile edge computing. Mob. Netw. Appl. 25(6), 2421–2433 (2020). https://doi.org/10.1007/s11036-020-01586-4, https://doi.org/10.1007/s11036-020-01586-4
Zhao, X., Sun, P., Xu, Z., Min, H., Yu, H.: Fusion of 3d lidar and camera data for object detection in autonomous vehicle applications. IEEE Sens. J. 20(9), 4901–4913 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rjoub, G., Bentahar, J., Joarder, Y.A. (2022). Active Federated YOLOR Model for Enhancing Autonomous Vehicles Safety. In: Awan, I., Younas, M., Poniszewska-Marańda, A. (eds) Mobile Web and Intelligent Information Systems. MobiWIS 2022. Lecture Notes in Computer Science, vol 13475. Springer, Cham. https://doi.org/10.1007/978-3-031-14391-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-14391-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14390-8
Online ISBN: 978-3-031-14391-5
eBook Packages: Computer ScienceComputer Science (R0)