Skip to main content

Active Federated YOLOR Model for Enhancing Autonomous Vehicles Safety

  • Conference paper
  • First Online:
Mobile Web and Intelligent Information Systems (MobiWIS 2022)

Abstract

A precise and real-time object detection system is crucial to ensuring the safety, smoothness, and trust of Autonomous Vehicles (AVs). Several machine learning techniques have been designed to improve vehicle detection capabilities and reduce the shortcomings caused by limited data and by transferring these data to a central server, which has shown poor performance under different conditions. In this paper, we propose an active federated learning-integrated solution over AVs that capitalizes on the You Only Learn One Representation (YOLOR) approach, a Convolutional Neural Network (CNN) specifically designed for real-time object detection. Our approach combines implicit and explicit knowledge, together with active learning and federated learning with the aim of improving the detection accuracy. Experiments show that our solution achieves better performance than traditional solutions (i.e., Gossip decentralized model and Centralized model).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://soda-2d.github.io/.

References

  1. Amiri, M.M., Gunduz, D.: Machine learning at the wireless edge: distributed stochastic gradient descent over-the-air. IEEE Trans. Sig. Process. 68, 2155–2169 (2020)

    Article  MathSciNet  Google Scholar 

  2. Bataineh, A.S., Bentahar, J., Mizouni, R., Wahab, O.A., Rjoub, G., El Barachi, M.: Cloud computing as a platform for monetizing data services: a two-sided game business model. IEEE Trans. Netw. Serv. Manage. (2021). https://doi.org/10.1109/TNSM.2021.3128160

    Article  Google Scholar 

  3. Bentahar, J., Drawel, N., Sadiki, A.: Quantitative group trust: a two-stage verification approach. In: Faliszewski, P., Mascardi, V., Pelachaud, C., Taylor, M.E. (eds.) 21st International Conference on Autonomous Agents and Multiagent Systems, AAMAS, Auckland, New Zewland, 9–13 May, pp. 100–108. International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS) (2022)

    Google Scholar 

  4. Bentahar, J., Meyer, J.C., Wan, W.: Model checking communicative agent-based systems. Knowl. Based Syst. 22(3), 142–159 (2009)

    Article  Google Scholar 

  5. Bommel, J.R.V.: Active learning during federated learning for object detection, July 2021. http://essay.utwente.nl/86855/

  6. Brust, C.A., Käding, C., Denzler, J.: Active Learning for Deep Object Detection. arXiv:1809.09875 [cs], September 2018. http://arxiv.org/abs/1809.09875, arXiv: 1809.09875

  7. Carranza-García, M., Lara-Benítez, P., García-Gutiérrez, J., Riquelme, J.C.: Enhancing object detection for autonomous driving by optimizing anchor generation and addressing class imbalance. Neurocomputing 449, 229–244 (2021)

    Article  Google Scholar 

  8. Culotta, A., McCallum, A.: Reducing labeling effort for structured prediction tasks. In: Proceedings of the 20th national conference on Artificial intelligence, vol. 2, pp. 746–751. AAAI 2005, AAAI Press, Pittsburgh, Pennsylvania, July 2005

    Google Scholar 

  9. Drawel, N., Bentahar, J., Laarej, A., Rjoub, G.: Formal verification of group and propagated trust in multi-agent systems. Auton. Agent. Multi-Agent Syst. 36(1), 1–31 (2022)

    Article  Google Scholar 

  10. El-Menshawy, M., Bentahar, J., Dssouli, R.: Symbolic model checking commitment protocols using reduction. In: Omicini, A., Sardina, S., Vasconcelos, W. (eds.) DALT 2010. LNCS (LNAI), vol. 6619, pp. 185–203. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20715-0_11

    Chapter  Google Scholar 

  11. Guo, J., Carrillo, D., Tang, S., Chen, Q., Yang, Q., Fu, S., Wang, X., Wang, N., Palacharla, P.: Coff: cooperative spatial feature fusion for 3-d object detection on autonomous vehicles. IEEE Internet Things J. 8(14), 11078–11087 (2021)

    Article  Google Scholar 

  12. Han, J., et al.: SODA10M: a large-scale 2D self/Semi-supervised object detection dataset for autonomous driving. arXiv:2106.11118 [cs], November 2021. http://arxiv.org/abs/2106.11118, arXiv: 2106.11118

  13. Jhung, J., Bae, I., Moon, J., Kim, T., Kim, J., Kim, S.: End-to-end steering controller with CNN-based closed-loop feedback for autonomous vehicles. In: 2018 IEEE intelligent vehicles symposium (IV), pp. 617–622. IEEE (2018)

    Google Scholar 

  14. Jiang, T., Fang, H., Wang, H.: Blockchain-based internet of vehicles: distributed network architecture and performance analysis. IEEE Internet Things J. 6(3), 4640–4649 (2018)

    Article  Google Scholar 

  15. Kim, S.W., Ko, K., Ko, H., Leung, V.C.: Edge-network-assisted real-time object detection framework for autonomous driving. IEEE Network 35(1), 177–183 (2021)

    Article  Google Scholar 

  16. Li, Y., Tao, X., Zhang, X., Liu, J., Xu, J.: Privacy-preserved federated learning for autonomous driving. IEEE Trans. Intell. Transp. Syst. 23(7), 8423–8434 (2022)

    Article  Google Scholar 

  17. Posner, J., Tseng, L., Aloqaily, M., Jararweh, Y.: Federated learning in vehicular networks: opportunities and solutions. IEEE Network 35(2), 152–159 (2021)

    Article  Google Scholar 

  18. Rjoub, G., Abdel Wahab, O., Bentahar, J., Bataineh, A.: A trust and energy-aware double deep reinforcement learning scheduling strategy for federated learning on IoT devices. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol. 12571, pp. 319–333. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65310-1_23

    Chapter  Google Scholar 

  19. Rjoub, G., Bentahar, J., Abdel Wahab, O., Saleh Bataineh, A.: Deep and reinforcement learning for automated task scheduling in large-scale cloud computing systems. Concurrency Comput. Pract. Experience 33(23), e5919 (2021)

    Google Scholar 

  20. Rjoub, G., Bentahar, J., Wahab, O.A.: Bigtrustscheduling: trust-aware big data task scheduling approach in cloud computing environments. Future Gener. Comput. Syst. 110, 1079–1097 (2020)

    Article  Google Scholar 

  21. Rjoub, G., Bentahar, J., Wahab, O.A., Bataineh, A.: Deep smart scheduling: a deep learning approach for automated big data scheduling over the cloud. In: 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud), pp. 189–196. IEEE (2019)

    Google Scholar 

  22. Rjoub, G., Wahab, O.A., Bentahar, J., Bataineh, A.: Trust-driven reinforcement selection strategy for federated learning on IoT devices. Computing (2022). https://doi.org/10.1007/s00607-022-01078-1

    Article  Google Scholar 

  23. Rjoub, G., Wahab, O.A., Bentahar, J., Bataineh, A.S.: Improving autonomous vehicles safety in snow weather using federated YOLO CNN learning. In: Bentahar, J., Awan, I., Younas, M., Grønli, T.-M. (eds.) MobiWIS 2021. LNCS, vol. 12814, pp. 121–134. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83164-6_10

    Chapter  Google Scholar 

  24. Tian, Z., Gao, X., Su, S., Qiu, J., Du, X., Guizani, M.: Evaluating reputation management schemes of internet of vehicles based on evolutionary game theory. IEEE Trans. Veh. Technol. 68(6), 5971–5980 (2019)

    Article  Google Scholar 

  25. Vanitha, V., Resmi, R., Reddy, K.N.S.V.: Machine learning-based charge scheduling of electric vehicles with minimum waiting time. Comput. Intell. 37(3), 1047–1055 (2021)

    Article  MathSciNet  Google Scholar 

  26. Wahab, O.A., Cohen, R., Bentahar, J., Otrok, H., Mourad, A., Rjoub, G.: An endorsement-based trust bootstrapping approach for newcomer cloud services. Inf. Sci. 527, 159–175 (2020)

    Article  Google Scholar 

  27. Wahab, O.A., Mourad, A., Otrok, H., Taleb, T.: Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems. IEEE Commun. Surv. Tutorials 23(2), 1342–1397 (2021)

    Article  Google Scholar 

  28. Wahab, O.A., Rjoub, G., Bentahar, J., Cohen, R.: Federated against the cold: a trust-based federated learning approach to counter the cold start problem in recommendation systems. Inf. Sci. 601, 189–206 (2022)

    Article  Google Scholar 

  29. Wei, J., He, J., Zhou, Y., Chen, K., Tang, Z., Xiong, Z.: Enhanced object detection with deep convolutional neural networks for advanced driving assistance. IEEE Trans. intell. Transp. Syst. 21(4), 1572–1583 (2019)

    Article  Google Scholar 

  30. Xu, Y., Lin, J., Gao, H., Li, R., Jiang, Z., Yin, Y., Wu, Y.: Machine learning-driven apps recommendation for energy optimization in green communication and networking for connected and autonomous vehicles. IEEE Trans. Green Commun. Networking (2022). https://doi.org/10.1109/TGCN.2022.3165262

  31. Yang, Q., Fu, S., Wang, H., Fang, H.: Machine-learning-enabled cooperative perception for connected autonomous vehicles: Challenges and opportunities. IEEE Network 35(3), 96–101 (2021)

    Article  Google Scholar 

  32. Ye, D., Yu, R., Pan, M., Han, Z.: Federated learning in vehicular edge computing: a selective model aggregation approach. IEEE Access 8, 23920–23935 (2020)

    Article  Google Scholar 

  33. Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., Hossain, M.S.: Mobility-aware proactive edge caching for connected vehicles using federated learning. IEEE Trans. Intell. Transp. Syst. 22(8), 5341–5351 (2020)

    Article  Google Scholar 

  34. Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., Hossain, M.S.: Mobility-aware proactive edge caching for connected vehicles using federated learning. IEEE Trans. Intell. Transp. Syst. 22(8), 5341–5351 (2021). https://doi.org/10.1109/TITS.2020.3017474

    Article  Google Scholar 

  35. Zhang, J., Zhao, Y., Wang, J., Chen, B.: FedMEC: improving efficiency of differentially private federated learning via mobile edge computing. Mob. Netw. Appl. 25(6), 2421–2433 (2020). https://doi.org/10.1007/s11036-020-01586-4, https://doi.org/10.1007/s11036-020-01586-4

  36. Zhao, X., Sun, P., Xu, Z., Min, H., Yu, H.: Fusion of 3d lidar and camera data for object detection in autonomous vehicle applications. IEEE Sens. J. 20(9), 4901–4913 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Bentahar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rjoub, G., Bentahar, J., Joarder, Y.A. (2022). Active Federated YOLOR Model for Enhancing Autonomous Vehicles Safety. In: Awan, I., Younas, M., Poniszewska-Marańda, A. (eds) Mobile Web and Intelligent Information Systems. MobiWIS 2022. Lecture Notes in Computer Science, vol 13475. Springer, Cham. https://doi.org/10.1007/978-3-031-14391-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14391-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14390-8

  • Online ISBN: 978-3-031-14391-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics