Skip to main content

Classification of Screenshot Image Captured in Online Meeting System

  • Conference paper
  • First Online:
Machine Learning and Knowledge Extraction (CD-MAKE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13480))

  • 1138 Accesses

Abstract

Owing to the spread of the COVID-19 virus, the online meeting system has become popular. From the security point of view, the protection against information leakage is important, as confidential documents are often displayed on a screen to share the information with all participants through the screen sharing function. Some participants may capture their screen to store the displayed documents in their local devices. In this study, we focus on the filtering process and lossy compression applied to the video delivered over an online meeting system, and investigate the identification of screenshot images using deep learning techniques to analyze the distortion caused by such operations. In our experimental results for Zoom applications, we can obtain more than 92.5% classification accuracy even if the captured image is intentionally edited to remove the traces of screen capture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.microsoft.com/en-us/microsoft-teams/group-chat-software.

  2. 2.

    https://zoom.us/.

  3. 3.

    https://apps.google.com/intl/en/meet/.

  4. 4.

    https://github.com/NicoRahm/CGvsPhoto.

References

  1. Agarwal, S., Fan, W., Farid, H.: A diverse large-scale dataset for evaluating rebroadcast attacks. In: Proceedings of ICASSP 2018, pp. 1997–2001 (2018)

    Google Scholar 

  2. Duda, R.O., Hart, P.E., Stork, D.G., et al.: Pattern Classification. Wiley, New York (1973)

    MATH  Google Scholar 

  3. Farid, H.: Image forgery detection. IEEE Signal Process. Mag. 26(2), 16–25 (2009)

    Article  Google Scholar 

  4. He, M.: Distinguish computer generated and digital images: a CNN solution. Concurr. Comput. Pract. Exp. 31, e4788 (2018)

    Google Scholar 

  5. He, P., Jiang, X., Sun, T., Li, H.: Computer graphics identification combining convolutional and recurrent neural networks. IEEE Signal Process. Lett. 25, 1369–1373 (2018)

    Article  Google Scholar 

  6. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282 (1995)

    Google Scholar 

  7. Hsu, Y.F., Chang, S.F.: Camera response functions for image forensics: an automatic algorithm for splicing detection. IEEE Trans. Inf. Forensics Secur. 5(4), 816–825 (2010)

    Article  Google Scholar 

  8. Huang, F., Huang, J., Shi, Y.Q.: Detecting double JPEG compression with the same quantization matrix. IEEE Trans. Inf. Forensics Secur. 5(4), 848–856 (2010)

    Article  Google Scholar 

  9. Li, H., Wang, S., Kot, A.C.: Image recapture detection with convolutional and recurrent neural networks. Electron. Imaging Med. Watermark. Secur. Forensics 5, 87–91 (2017)

    Google Scholar 

  10. Lukáš, J., Fridrich, J.: Estimation of primary quantization matrix in double compressed JPEG images. In: Proceedings of Digital Forensic Research Workshop, pp. 5–8 (2003)

    Google Scholar 

  11. Lukáš, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)

    Article  Google Scholar 

  12. Pevný, T., Fridrich, J.: Detection of double-compression in JPEG images for applications in steganography. IEEE Trans. Inf. Forensics Secur. 3(2), 247–258 (2008)

    Article  Google Scholar 

  13. Piva, A.: An overview on image forensics. ISRN Signal Process. 2013, 1–22 (2013)

    Article  Google Scholar 

  14. Quan, W., Wan, K., Yan, D.M., Zhang, X.: Distinguishing between natural and computer-generated images using convolutional neural networks. IEEE Trans. Inf. Forensics Secur. 18, 2772–2787 (2018)

    Article  Google Scholar 

  15. Rahmouni, N., Nozick, V., Yamagishi, J., Echizen, I.: Distinguishing computer graphics from natural images using convolution neural networks. In: Proceedings of WIFS 2017, pp. 1–6 (2017)

    Google Scholar 

  16. Stamm, M.C., Wu, M., Liu, K.J.R.: Information forensics: an overview of the first decade. IEEE Access 1, 167–200 (2013)

    Article  Google Scholar 

  17. Yang, P., Ni, R., Zhao, Y.: Recapture image forensics based on Laplacian convolutional neural networks. In: Shi, Y.Q., Kim, H.J., Perez-Gonzalez, F., Liu, F. (eds.) IWDW 2016. LNCS, vol. 10082, pp. 119–128. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53465-7_9

    Chapter  Google Scholar 

  18. Yu, I.J., Kim, D.G., Park, J.S., Hou, J.U., Choi, S., Lee, H.K.: Identifying photorealistic computer graphics using convolutional neural networks. In: Proceedings of ICIP 2017, pp. 4093–4097 (2017)

    Google Scholar 

Download references

Acknowledgment

This research was supported by JSPS KAKENHI Grant Number 19K22846, JST SICORP Grant Number JPMJSC20C3, and JST CREST Grant Number JPMJCR20D3, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Kuribayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuribayashi, M., Kamakari, K., Funabiki, N. (2022). Classification of Screenshot Image Captured in Online Meeting System. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds) Machine Learning and Knowledge Extraction. CD-MAKE 2022. Lecture Notes in Computer Science, vol 13480. Springer, Cham. https://doi.org/10.1007/978-3-031-14463-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14463-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14462-2

  • Online ISBN: 978-3-031-14463-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics