Skip to main content

SECI Model in Data-Based Procedure for the Assessment of the Frailty State in Diabetic Patients

  • Conference paper
  • First Online:
Machine Learning and Knowledge Extraction (CD-MAKE 2022)

Abstract

The manuscript provides a theoretical consideration of the process of knowledge creation in the area of the complex medical domain and the case of unanswered medical uncertainties. We used the SECI model to help explain the challenges that must be faced and the complex structure of the procedures that stay herein. Typically, the SECI model proposed by Nonaka in 1994 represents the best-known conceptual framework for understanding organization knowledge generation processes. In this model, the knowledge is continuously converted and created within user practices, collaboration, interaction, and learning. This paper describes an application of the SECI model to the data-based procedure for assessing the frailty state of diabetic patients. We focused on effectively supporting collaboration and knowledge transfer between participating data analysts and medical experts. We used Exploratory Data Analysis, cut-off values extraction, and regression to create new knowledge (combination) based on the expressed tacit ones (externalization). Also, we used internalization and socialization to design experiments and describe the results achieved in the discussion. Finally, we could conclude that effective knowledge transfer, conversion, and creation, are the basis of every data-based diagnostic procedure. In the case of the complex medical domain, the role of the medical expert is more important than usual, and this aspect of knowledge creation is mainly unconscious in the scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ogura, S., Jakovljevic, M.M.: Editorial: global population aging - health care, social and economic consequences. Front. Public Heal. 6, 335 (2018). https://doi.org/10.3389/fpubh.2018.00335

  2. Whitty, C.J.M., et al.: Rising to the challenge of multimorbidity. BMJ (Clin. Res. Edn.) 368, l6964 (2020). https://doi.org/10.1136/bmj.l6964

  3. Nardi, R., Scanelli, G., Corrao, S., Iori, I., Mathieu, G., Cataldi Amatrian, R.: Co-morbidity does not reflect complexity in internal medicine patients. Eur. J. Intern. Med. 18(5), 359–368 (2007). https://doi.org/10.1016/j.ejim.2007.05.002

  4. Barnett, K., Mercer, S.W., Norbury, M., Watt, G., Wyke, S., Guthrie, B.: Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet 380(9836), 37–43 (2012). https://doi.org/10.1016/S0140-6736(12)60240-2

    Article  Google Scholar 

  5. Hanlon, P., Nicholl, B.I., Jani, B.D., Lee, D., McQueenie, R., Mair, F.S.: Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: a prospective analysis of 493 737 UK Biobank participants. Lancet. Public Heal. 3(7), e323–e332 (2018). https://doi.org/10.1016/S2468-2667(18)30091-4

    Article  Google Scholar 

  6. Franceschi, C., et al.: The continuum of aging and age-related diseases: common mechanisms but different rates. Front. Med. 5, 61 (2018). https://doi.org/10.3389/fmed.2018.00061

    Article  Google Scholar 

  7. CalderónLarrañaga, A., et al.: Multimorbidity and functional impairment-bidirectional interplay, synergistic effects and common pathways. J. Intern. Med. 285(3), 255–271 (2019). https://doi.org/10.1111/joim.12843

    Article  Google Scholar 

  8. Majnarić, L.T., et al.: Low psychological resilience in older individuals: an association with increased inflammation, oxidative stress and the presence of chronic medical conditions. Int. J. Mol. Sci. 22(16), 8970 (2021). https://doi.org/10.3390/ijms22168970

  9. Roden, M., Shulman, G.I.: The integrative biology of type 2 diabetes. Nature 576(7785), 51–60 (2019). https://doi.org/10.1038/s41586-019-1797-8

    Article  Google Scholar 

  10. Cho, N.H., et al.: IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018). https://doi.org/10.1016/j.diabres.2018.02.023

    Article  Google Scholar 

  11. Mitchell, S., et al.: A roadmap on the prevention of cardiovascular disease among people living with diabetes. Glob. Heart 14(3), 215–240 (2019). https://doi.org/10.1016/j.gheart.2019.07.009

    Article  Google Scholar 

  12. Bellary, S., Kyrou, I., Brown, J.E., Bailey, C.J.: Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat. Rev. Endocrinol. 17(9), 534–548 (2021). https://doi.org/10.1038/s41574-021-00512-2

    Article  Google Scholar 

  13. Vermeiren, S., et al.: Frailty and the prediction of negative health outcomes: a meta-analysis. J. Am. Med. Dir. Assoc. 17(12), 1163.e1–1163.e17 (2016). https://doi.org/10.1016/j.jamda.2016.09.010

  14. Dent, E., et al.: Physical frailty: ICFSR international clinical practice guidelines for identification and management. J. Nutr. Health Aging 23(9), 771–787 (2019). https://doi.org/10.1007/s12603-019-1273-z

    Article  Google Scholar 

  15. Fried, L.P., et al.: Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. J. Gerontol. A. Biol. Sci. Med. Sci. 64(10), 1049–1057 (2009). https://doi.org/10.1093/gerona/glp076

    Article  MathSciNet  Google Scholar 

  16. Sinclair, A.J., Rodriguez-Mañas, L.: Diabetes and frailty: two converging conditions? Can. J. Diabetes 40(1), 77–83 (2016). https://doi.org/10.1016/j.jcjd.2015.09.004

    Article  Google Scholar 

  17. Kleipool, E.E., et al.: Frailty in older adults with cardiovascular disease: cause, effect or both? Aging Dis. 9(3), 489–497 (2018). https://doi.org/10.14336/AD.2017.1125

    Article  Google Scholar 

  18. Walker, S.R., Wagner, M., Tangri, N.: Chronic kidney disease, frailty, and unsuccessful aging: a review. J. Ren. Nutr. Off. J. Counc. Ren. Nutr. Natl. Kidney Found. 24(6), 364–370 (2014). https://doi.org/10.1053/j.jrn.2014.09.001

  19. Calvani, R., et al.: The ‘BIOmarkers associated with Sarcopenia and PHysical frailty in EldeRly pErsons’ (BIOSPHERE) study: rationale, design and methods. Eur. J. Int. Med. 56, 19–25 (2018). https://doi.org/10.1016/j.ejim.2018.05.001

    Article  Google Scholar 

  20. Kurkcu, M., Meijer, R.I., Lonterman, S., Muller, M., de van der Schueren, M.A.E.: The association between nutritional status and frailty characteristics among geriatric outpatients. Clin. Nutr. ESPEN. 23, 112–116 (2018). https://doi.org/10.1016/j.clnesp.2017.11.006

  21. Onder, G., Vetrano, D.L., Marengoni, A., Bell, J.S., Johnell, K., Palmer, K.: Accounting for frailty when treating chronic diseases. Eur. J. Intern. Med. 56, 49–52 (2018). https://doi.org/10.1016/j.ejim.2018.02.021

    Article  Google Scholar 

  22. Bocklisch, F., Hausmann, D.: Multidimensional fuzzy pattern classifier sequences for medical diagnostic reasoning. Appl. Soft Comput. 66, 297–310 (2018). https://doi.org/10.1016/j.asoc.2018.02.041

    Article  Google Scholar 

  23. Nonaka, I.: A dynamic theory of organizational knowledge creation. Organ. Sci. 5(1), 14–37 (1994). http://www.jstor.org/stable/2635068

  24. Cox, V.: Translating Statistics to Make Decisions. Apress, New York (2017). https://doi.org/10.1007/978-1-4842-2256-0

  25. Komorowski, M., Marshall, D.C., Salciccioli, J.D., Crutain, Y.: Secondary Analysis of Electronic Health Records, pp. 1–427 (2016). https://doi.org/10.1007/978-3-319-43742-2

  26. Tolles, J., Meurer, W.J.: Logistic regression: relating patient characteristics to outcomes. JAMA 316(5), 533–534 (2016). https://doi.org/10.1001/jama.2016.7653

    Article  Google Scholar 

  27. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19(6), 716–723 (1974). https://doi.org/10.1109/TAC.1974.1100705

    Article  MathSciNet  MATH  Google Scholar 

  28. Al Saedi, A., Feehan, J., Phu, S., Duque, G.: Current and emerging biomarkers of frailty in the elderly. Clin. Interv. Aging. 14, 389–398 (2019). https://doi.org/10.2147/CIA.S168687

  29. Majnarić, L.T., Bekić, S., Babič, F., Pusztová, Ľ, Paralič, J.: Cluster analysis of the associations among physical frailty, cognitive impairment and mental disorders. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 26, e924281 (2020). https://doi.org/10.12659/MSM.924281

    Article  Google Scholar 

  30. Babič, F., Trtica Majnarić, L., Bekić, S., Holzinger, A.: Machine learning for family doctors: a case of cluster analysis for studying aging associated comorbidities and frailty. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) Machine Learning and Knowledge Extraction. LNCS, vol. 11713, pp. 178–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29726-8_12

    Chapter  Google Scholar 

  31. Bekić, S., Babič, F., Pavlišková, V., Paralič, J., Wittlinger, T., Majnarić, L.T.: Clusters of physical frailty and cognitive impairment and their associated comorbidities in older primary care patients. Healthcare. 9(7), 891 (2021). https://doi.org/10.3390/healthcare9070891

  32. Sinclair, A.J., Abdelhafiz, A.H., Rodriguez-Manas, L.: Frailty and sarcopenia-newly emerging and high impact complications of diabetes. J. Diabetes Compl. 31(9), 1465–1473 (2017)

    Article  Google Scholar 

  33. Howard, R., Scheiner, A., Kanetsky, P.A., Egan, K.M.: Sociodemographic and lifestyle factors associated with the neutrophil-to-lymphocyte ratio. Ann. Epidemiol. 38, 11-21.e6 (2019). https://doi.org/10.1016/j.annepidem.2019.07.015

    Article  Google Scholar 

  34. Zoungas, S., et al.: Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes. Diabetologia 57(12), 2465–2474 (2014). https://doi.org/10.1007/s00125-014-3369-7

    Article  Google Scholar 

  35. Hassler, A.P., Menasalvas, E., García-García, F.J., Rodríguez-Mañas, L., Holzinger, A.: Importance of medical data preprocessing in predictive modeling and risk factor discovery for the frailty syndrome. BMC Med. Inform. Decis. Mak. 19(1), 33 (2019). https://doi.org/10.1186/s12911-019-0747-6

    Article  Google Scholar 

  36. Almuayqil, S., Atkins, A.S., Sharp, B.: Application of the SECI model using web tools to support diabetes self-management and education in the kingdom of Saudi Arabia. Intell. Inf. Manag. 09(05), 156–176 (2017). https://doi.org/10.4236/iim.2017.95008

    Article  Google Scholar 

  37. Centobelli, P., Cerchione, R., Esposito, E., Riccio, E.: Enabling technological innovation in healthcare: a knowledge creation model perspective (2021)

    Google Scholar 

  38. Rokošná, J., Babič, F., Majnarić, L.T., Pusztová, L.: Cooperation between data analysts and medical experts: a case study. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) Machine Learning and Knowledge Extraction. LNCS, vol. 12279, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57321-8_10

    Chapter  Google Scholar 

  39. Chen, X., Mao, G., Leng, S.X.: Frailty syndrome: an overview. Clin. Interv. Aging 9, 433–441 (2014). https://doi.org/10.2147/CIA.S45300

    Article  Google Scholar 

  40. Majnarić, L.T., Babič, F., O’Sullivan, S., Holzinger, A.: AI and big data in healthcare: towards a more comprehensive research framework for multimorbidity. J. Clin. Med. 10(4), 766 (2021). https://doi.org/10.3390/jcm10040766

    Article  Google Scholar 

  41. Reynolds, H.R., et al.: Mechanisms of myocardial infarction in women without angiographically obstructive coronary artery disease. Circulation 124(13), 1414–1425 (2011). https://doi.org/10.1161/CIRCULATIONAHA.111.026542

    Article  Google Scholar 

  42. AlBadri, A., et al.: Inflammatory biomarkers as predictors of heart failure in women without obstructive coronary artery disease: a report from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE). PLoS One 12(5), e0177684 (2017). https://doi.org/10.1371/journal.pone.0177684

  43. Beltrami, M., Fumagalli, C., Milli, M.: Frailty, sarcopenia and cachexia in heart failure patients: different clinical entities of the same painting. World J. Cardiol. 13(1), 1 (2021)

    Article  Google Scholar 

  44. Šabanović, Š., et al.: Metabolic syndrome in hypertensive women in the age of menopause: a case study on data from general practice electronic health records. BMC Med. Inform. Decis. Mak. 18(1), 24 (2018). https://doi.org/10.1186/s12911-018-0601-2

  45. Trtica Majnarić, L., Bosnić, Z., Kurevija, T., Wittlinger, T.: Cardiovascular risk and aging: the need for a more comprehensive understanding. J. Geriatr. Cardiol. 18(6), 462–478 (2021). https://doi.org/10.11909/j.issn.1671-5411.2021.06.004

  46. Strain, W.D., Down, S., Brown, P., Puttanna, A., Sinclair, A.: Diabetes and frailty: an expert consensus statement on the management of older adults with type 2 diabetes. Diabetes Therapy 12(5), 1227–1247 (2021). https://doi.org/10.1007/s13300-021-01035-9

    Article  Google Scholar 

  47. Ahlqvist, E., et al.: Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet. Diabetes Endocrinol. 6(5), 361–369 (2018). https://doi.org/10.1016/S2213-8587(18)30051-2

  48. Dennis, J.M., Shields, B.M., Henley, W.E., Jones, A.G., Hattersley, A.T.: Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet. Diabetes Endocrinol. 7(6), 442–451 (2019). https://doi.org/10.1016/S2213-8587(19)30087-7

  49. Bosnic, Z., et al.: Clustering inflammatory markers with sociodemographic and clinical characteristics of patients with diabetes type 2 can support family physicians’ clinical reasoning by reducing patients’ complexity. Healthcare 9(12), 1687 (2021). https://doi.org/10.3390/healthcare9121687

  50. Longo, L., Goebel, R., Lecue, F., Kieseberg, P., Holzinger, A.: Explainable artificial intelligence: concepts, applications, research challenges and visions. In: Holzinger, A., Kieseberg, P., Tjoa, A., Weippl, E. (eds.) Machine Learning and Knowledge Extraction. CD-MAKE 2020. LNCS, vol. 12279. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57321-8_1

  51. Gelman, A., Loken, E.: The garden of forking paths: why multiple comparisons can be a problem, even when there is no ‘fishing expedition’ or ‘p-hacking’ and the research hypothesis was posited ahead of time ∗ (2019)

    Google Scholar 

Download references

Acknowledgements

The work was partially supported by The Slovak Research and Development Agency under grants no. APVV-20-0232; The Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic under grant no. VEGA 1/0685/2; and the University of Osijek through the project IP2 - 2021 “Low Resilience to Chronic Stress and Chronic Aging Diseases”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Babič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babič, F., Anderková, V., Bosnić, Z., Volarić, M., Trtica Majnarić, L. (2022). SECI Model in Data-Based Procedure for the Assessment of the Frailty State in Diabetic Patients. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds) Machine Learning and Knowledge Extraction. CD-MAKE 2022. Lecture Notes in Computer Science, vol 13480. Springer, Cham. https://doi.org/10.1007/978-3-031-14463-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14463-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14462-2

  • Online ISBN: 978-3-031-14463-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics