Skip to main content

Towards Refined Classifications Driven by SHAP Explanations

  • Conference paper
  • First Online:
Machine Learning and Knowledge Extraction (CD-MAKE 2022)

Abstract

Machine Learning (ML) models are inherently approximate; as a result, the predictions of an ML model can be wrong. In applications where errors can jeopardize a company’s reputation, human experts often have to manually check the alarms raised by the ML models by hand, as wrong or delayed decisions can have a significant business impact. These experts often use interpretable ML tools for the verification of predictions. However, post-prediction verification is also costly. In this paper, we hypothesize that the outputs of interpretable ML tools, such as SHAP explanations, can be exploited by machine learning techniques to improve classifier performance. By doing so, the cost of the post-prediction analysis can be reduced. To confirm our intuition, we conduct several experiments where we use SHAP explanations directly as new features. In particular, by considering nine datasets, we first compare the performance of these “SHAP features” against traditional “base features” on binary classification tasks. Then, we add a second-step classifier relying on SHAP features, with the goal of reducing false-positive and false-negative results of typical classifiers. We show that SHAP explanations used as SHAP features can help to improve classification performance, especially for false-negative reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/marcotcr/lime.

  2. 2.

    https://github.com/slundberg/shap.

  3. 3.

    https://archive.ics.uci.edu/ml/datasets/adult.

  4. 4.

    https://archive.ics.uci.edu/ml/datasets/Bank+Marketing.

  5. 5.

    https://www.kaggle.com/mlg-ulb/creditcardfraud.

  6. 6.

    https://aix360.readthedocs.io/en/latest/datasets.html.

  7. 7.

    https://community.fico.com/s/explainable-machine-learning-challenge.

  8. 8.

    https://www.kaggle.com/wordsforthewise/lending-club.

  9. 9.

    https://www.kaggle.com/ealaxi/paysim1.

  10. 10.

    https://github.com/Fraud-Detection-Handbook.

References

  1. Antwarg, L., Miller, R.M., Shapira, B., Rokach, L.: Explaining anomalies detected by autoencoders using Shapley Additive Explanations. Expert Syst. Appl. 186, 115736 (2021)

    Article  Google Scholar 

  2. Arslan, Y., et al.: On the suitability of SHAP explanations for refining classifications. In: Proceedings of the 14th International Conference on Agents and Artificial Intelligence (ICAART 2022) (2022)

    Google Scholar 

  3. Bank of England: Machine learning in UK financial services (2019). https://www.bankofengland.co.uk/-/media/boe/files/report/2019/machine-learning-in-uk-financial-services.pdf. Accessed Apr 2022

  4. Becker, T.E., Robertson, M.M., Vandenberg, R.J.: Nonlinear transformations in organizational research: possible problems and potential solutions. Organ. Res. Methods 22(4), 831–866 (2019)

    Article  Google Scholar 

  5. Berger, C., Dohoon, K.: A two-step process for detecting fraud using ADW, oracle machine learning, APEX and oracle analytics cloud (2020). https://blogs.oracle.com/machinelearning/a-two-step-process-for-detecting-fraud-using-oracle-machine-learning. Accessed Apr 2022

  6. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  7. Darwish, S.M.: A bio-inspired credit card fraud detection model based on user behavior analysis suitable for business management in electronic banking. J. Ambient Intell. Human. Comput. 11, 4873–48871 (2020). https://doi.org/10.1007/s12652-020-01759-9

    Article  Google Scholar 

  8. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Ghamizi, S., et al.: Search-based adversarial testing and improvement of constrained credit scoring systems. In: 28th ACM Joint Meeting on ESEC/FSE, pp. 1089–1100 (2020)

    Google Scholar 

  10. Misheva, B.H., Hirsa, A., Osterrieder, J., Kulkarni, O., Lin, S.F.: Explainable AI in credit risk management. Credit Risk Management, 1 March 2021

    Google Scholar 

  11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  12. Ishida, T., Niu, G., Sugiyama, M.: Binary classification from positive-confidence data. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  13. Jia, Y., Frank, E., Pfahringer, B., Bifet, A., Lim, N.: Studying and exploiting the relationship between model accuracy and explanation quality. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12976, pp. 699–714. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86520-7_43

    Chapter  Google Scholar 

  14. Khormuji, M.K., Bazrafkan, M., Sharifian, M., Mirabedini, S.J., Harounabadi, A.: Credit card fraud detection with a cascade artificial neural network and imperialist competitive algorithm. IJCA 96(25), 1–9 (2014)

    Article  Google Scholar 

  15. Komatsu, M., Takada, C., Neshi, C., Unoki, T., Shikida, M.: Feature extraction with SHAP value analysis for student performance evaluation in remote collaboration. In: 2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP), pp. 1–5 (2020)

    Google Scholar 

  16. Le Borgne, Y.A., Siblini, W., Lebichot, B., Bontempi, G.: Reproducible Machine Learning for Credit Card Fraud Detection - Practical Handbook. Université Libre de Bruxelles (2022)

    Google Scholar 

  17. Li, R., et al.: Machine learning-based interpretation and visualization of nonlinear interactions in prostate cancer survival. JCO Clin. Cancer Inform. 4, 637–646 (2020)

    Article  Google Scholar 

  18. Lin, C.F.: Application-grounded evaluation of predictive model explanation methods. Master’s thesis, Eindhoven University of Technology (2018)

    Google Scholar 

  19. Lopez-Rojas, E., Elmir, A., Axelsson, S.: PaySim: a financial mobile money simulator for fraud detection. In: 28th European Modeling and Simulation Symposium, EMSS, Larnaca, pp. 249–255. Dime University of Genoa (2016)

    Google Scholar 

  20. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 4768–4777 (2017)

    Google Scholar 

  21. Molnar, C.: Interpretable machine learning. Lulu.com (2020)

    Google Scholar 

  22. Moro, S., Cortez, P., Rita, P.: A data-driven approach to predict the success of bank telemarketing. Decis. Support Syst. 62, 22–31 (2014)

    Article  Google Scholar 

  23. Pascual, A., Marchini, K., Van Dyke, A.: Overcoming false positives: saving the sale and the customer relationship. White paper, Javelin strategy and research reports (2015). Accessed Apr 2022

    Google Scholar 

  24. Quigley, J., Walls, L.: Trading reliability targets within a supply chain using Shapley’s value. Reliab. Eng. Syst. Saf. 92(10), 1448–1457 (2007)

    Article  Google Scholar 

  25. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: Explaining the predictions of any classifier. In: ACM SIGKDD, pp. 1135–1144 (2016)

    Google Scholar 

  26. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10(3), e0118432 (2015)

    Article  Google Scholar 

  27. Shachar, N., et al.: The importance of nonlinear transformations use in medical data analysis. JMIR Med. Inform. 6(2), e27 (2018)

    Article  Google Scholar 

  28. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  29. Shapley, L.S.: A value for n-person games. In: Contributions to the Theory of Games, vol. 2, no. 28, pp. 307–317 (1953)

    Google Scholar 

  30. Sheng, H., Shi, H., et al.: Research on cost allocation model of telecom infrastructure co-construction based on value Shapley algorithm. Int. J. Future Gener. Commun. Netw. 9(7), 165–172 (2016)

    Article  Google Scholar 

  31. Song, C., Liu, F., Huang, Y., Wang, L., Tan, T.: Auto-encoder based data clustering. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8258, pp. 117–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41822-8_15

    Chapter  Google Scholar 

  32. Tharwat, A.: Classification assessment methods. New Engl. J. Entrep. 17(1), 168–192 (2020). https://www.emerald.com/insight/content/doi/10.1016/j.aci.2018.08.003/full/html

  33. Thejas, G., Dheeshjith, S., Iyengar, S., Sunitha, N., Badrinath, P.: A hybrid and effective learning approach for click fraud detection. Mach. Learn. Appl. 3, 100016 (2021)

    Google Scholar 

  34. Veiber, L., Allix, K., Arslan, Y., Bissyandé, T.F., Klein, J.: Challenges towards production-ready explainable machine learning. In: 2020 USENIX Conference on Operational Machine Learning (OpML 2020) (2020)

    Google Scholar 

  35. Wedge, R., Kanter, J.M., Veeramachaneni, K., Rubio, S.M., Perez, S.I.: Solving the false positives problem in fraud prediction using automated feature engineering. In: Brefeld, U., et al. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11053, pp. 372–388. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10997-4_23

    Chapter  Google Scholar 

  36. Weerts, H.J.: Interpretable machine learning as decision support for processing fraud alerts. Ph.D. thesis, Master’s Thesis, Eindhoven University of Technology, 17 May 2019

    Google Scholar 

  37. Weerts, H.J., van Ipenburg, W., Pechenizkiy, M.: Case-based reasoning for assisting domain experts in processing fraud alerts of black-box machine learning models. In: KDD Workshop on Anomaly Detection in Finance (KDD-ADF 2019) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Arslan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arslan, Y. et al. (2022). Towards Refined Classifications Driven by SHAP Explanations. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds) Machine Learning and Knowledge Extraction. CD-MAKE 2022. Lecture Notes in Computer Science, vol 13480. Springer, Cham. https://doi.org/10.1007/978-3-031-14463-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14463-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14462-2

  • Online ISBN: 978-3-031-14463-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics