Skip to main content

Global Interpretable Calibration Index, a New Metric to Estimate Machine Learning Models’ Calibration

  • Conference paper
  • First Online:
Machine Learning and Knowledge Extraction (CD-MAKE 2022)

Abstract

The concept of calibration is key in the development and validation of Machine Learning models, especially in sensitive contexts such as the medical one. However, existing calibration metrics can be difficult to interpret and are affected by theoretical limitations. In this paper, we present a new metric, called GICI (Global Interpretable Calibration Index), which is characterized by being local and defined only in terms of simple geometrical primitives, which makes it both simpler to interpret, and more general than other commonly used metrics, as it can be used also in recalibration procedures. Also, compared to traditional metrics, the GICI allows for a more comprehensive evaluation, as it provides a three-level information: a bin-level local estimate, a global one, and an estimate of the extent confidence scores are either over- or under-confident with respect to actual error rate. We also report the results from experiments aimed at testing the above statements and giving insights about the practical utility of this metric also to improve discriminative accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Assel, M., Sjoberg, D., Vickers, A.: The brier score does not evaluate the clinical utility of diagnostic tests or prediction models. Diagn. Progn. Res. 1, 1–7 (2017)

    Article  Google Scholar 

  2. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78(1), 1–3 (1950)

    Article  Google Scholar 

  3. Burt, T., Button, K., Thom, H., Noveck, R., Munafò, M.R.: The burden of the “false-negatives’’ in clinical development: analyses of current and alternative scenarios and corrective measures. Clin. Transl. Sci. 10(6), 470–479 (2017)

    Article  Google Scholar 

  4. Cabitza, F., Campagner, A., Sconfienza, L.M.: As if sand were stone. New concepts and metrics to probe the ground on which to build trustable AI. BMC Med. Inform. Decis. Making 20(1), 1–21 (2020)

    Article  Google Scholar 

  5. Cabitza, F., et al.: The importance of being external. Methodological insights for the external validation of machine learning models in medicine. Comput. Methods Programs Biomed. 208, 106288 (2021)

    Article  Google Scholar 

  6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  7. Christodoulou, E., Ma, J., Collins, G.S., Steyerberg, E.W., Verbakel, J.Y., Van Calster, B.: A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 110, 12–22 (2019)

    Article  Google Scholar 

  8. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74(368), 829–836 (1979)

    Article  MathSciNet  Google Scholar 

  9. Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83(403), 596–610 (1988)

    Article  Google Scholar 

  10. DeGroot, M.H., Fienberg, S.E.: The comparison and evaluation of forecasters. J. Roy. Stat. Soc. Ser. D (Stat.) 32(1–2), 12–22 (1983)

    Google Scholar 

  11. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26 (1979)

    Article  MathSciNet  Google Scholar 

  13. Frank, A., Asuncion, A.: Statlog (heart) data set (2010). http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)

  14. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102(477), 359–378 (2007)

    Article  MathSciNet  Google Scholar 

  15. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  16. Hartmann, H.C., Pagano, T.C., Sorooshian, S., Bales, R.: Confidence builders: evaluating seasonal climate forecasts from user perspectives. Bull. Am. Meteor. Soc. 83(5), 683–698 (2002)

    Article  Google Scholar 

  17. Kompa, B., Snoek, J., Beam, A.L.: Second opinion needed: communicating uncertainty in medical machine learning. NPJ Digit. Med. 4(1), 1–6 (2021)

    Article  Google Scholar 

  18. Luo, H., Pan, X., Wang, Q., Ye, S., Qian, Y.: Logistic regression and random forest for effective imbalanced classification. In: 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), vol. 1, pp. 916–917. IEEE (2019)

    Google Scholar 

  19. Luo, R., et al.: Localized calibration: metrics and recalibration. arXiv preprint arXiv:2102.10809 (2021)

  20. Naeini, M.P., Cooper, G.F., Hauskrecht, M.: Obtaining well calibrated probabilities using Bayesian binning. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 2901–2907. AAAI Press (2015)

    Google Scholar 

  21. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 625–632 (2005)

    Google Scholar 

  22. Nusinovici, S., et al.: Logistic regression was as good as machine learning for predicting major chronic diseases. J. Clin. Epidemiol. 122, 56–69 (2020)

    Article  Google Scholar 

  23. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)

    Google Scholar 

  24. Raghu, M., et al.: Direct uncertainty prediction for medical second opinions. In: International Conference on Machine Learning, pp. 5281–5290. PMLR (2019)

    Google Scholar 

  25. Ramana, B.V., Boddu, R.S.K.: Performance comparison of classification algorithms on medical datasets. In: 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0140–0145. IEEE (2019)

    Google Scholar 

  26. Robert, C., Casella, G.: Monte Carlo Statistical Methods, vol. 2. Springer, New York (2004). https://doi.org/10.1007/978-1-4757-4145-2

    Book  MATH  Google Scholar 

  27. Rossi, R.A., Ahmed, N.K.: ILP, Indian liver patient dataset. In: AAAI (2015). https://networkrepository.com

  28. Rossi, R.A., Ahmed, N.K.: Pima Indians diabets dataset. In: AAAI (2015). https://networkrepository.com

  29. Sahoo, R., Zhao, S., Chen, A., Ermon, S.: Reliable decisions with threshold calibration. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  30. Scargle, J.D.: Studies in astronomical time series analysis. V. Bayesian blocks, a new method to analyze structure in photon counting data. Astrophys. J. 504(1), 405 (1998)

    Google Scholar 

  31. Steyerberg, E., et al.: Assessing the performance of prediction models a framework for traditional and novel measures. Epidemiology 21, 128–38 (2010)

    Article  Google Scholar 

  32. Vaicenavicius, J., Widmann, D., Andersson, C., Lindsten, F., Roll, J., Schön, T.: Evaluating model calibration in classification. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 3459–3467. PMLR (2019)

    Google Scholar 

  33. Van Calster, B., McLernon, D.J., Van Smeden, M., Wynants, L., Steyerberg, E.W.: Calibration: the achilles heel of predictive analytics. BMC Med. 17(1), 1–7 (2019)

    Google Scholar 

  34. Van Calster, B., Vickers, A.J.: Calibration of risk prediction models: impact on decision-analytic performance. Med. Decis. Making 35(2), 162–169 (2015)

    Article  Google Scholar 

  35. Vovk, V., Petej, I.: Venn-abers predictors. arXiv preprint arXiv:1211.0025 (2012)

  36. Wallace, B.C., Dahabreh, I.J.: Class probability estimates are unreliable for imbalanced data (and how to fix them). In: 2012 IEEE 12th International Conference on Data Mining, pp. 695–704. IEEE (2012)

    Google Scholar 

  37. Wolbergs, W., et al.: Breast cancer wisconsin (diagnostic) data set. UCI Machine Learning Repository (1992). http://archive.ics.uci.edu/ml/

  38. Zhao, S., Ma, T., Ermon, S.: Individual calibration with randomized forecasting. In: International Conference on Machine Learning, pp. 11387–11397. PMLR (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Cabitza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabitza, F., Campagner, A., Famiglini, L. (2022). Global Interpretable Calibration Index, a New Metric to Estimate Machine Learning Models’ Calibration. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds) Machine Learning and Knowledge Extraction. CD-MAKE 2022. Lecture Notes in Computer Science, vol 13480. Springer, Cham. https://doi.org/10.1007/978-3-031-14463-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14463-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14462-2

  • Online ISBN: 978-3-031-14463-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics