Abstract
Today, data management is important, mainly in organizations where the real-time processing of a large number of events is important to decision-making systems. Analyzing large amounts of data through analytics allows discovering hidden knowledge and make decisions in consequence. In this work, we propose to solve a decision-making problem in real-time using prescriptive analytics model, reinforcement learning agents and parallel computing techniques in GPU. Particularly, we consider the vehicle routing problem (VRP) with real-time information provision and re-routing. The experimental results confirm that the adequate combination of these techniques is a promising option for solving this kind of problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)
Anaconda: Anaconda documentation (2022). https://www.anaconda.com/products
Asghari, M., Mirzapour Al-e-hashem, S.M.J.: Green vehicle routing problem: a state-of-the-art review. Int. J. Prod. Econ. 231, 107899 (2021). https://doi.org/10.1016/j.ijpe.2020.107899. https://www.sciencedirect.com/science/article/pii/S0925527320302607
Barto, A.G., Sutton, R.S., Anderson, C.W.: Looking back on the actor-critic architecture. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 40–50 (2021). https://doi.org/10.1109/TSMC.2020.3041775
Borrero, I., Arias, M.: Deep Learning. Alonso Barba, Universidad de Huelva (2021). https://books.google.com.ar/books?id=kzsvEAAAQBAJ
Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964). http://www.jstor.org/stable/167703
Ebrahimnejad, A., Verdegay, J.L.: Fuzzy Sets-Based Methods and Techniques for Modern Analytics. SFSC, vol. 364. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73903-8
Flood, M.M.: The traveling-salesman problem. Oper. Res. 4(1), 61–75 (1956). http://www.jstor.org/stable/167517
Garofalakis, M., Gehrke, J., Rastogi, R.: Data Stream Management: Processing High-Speed Data Streams. Data-Centric Systems and Applications. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-540-28608-0. https://books.google.com.ar/books?id=qiSpDAAAQBAJ
Gorelick, M., Ozsvald, I.: High Performance Python: Practical Performant Programming for Humans. O’Reilly Media (2020). https://books.google.com.ar/books?id=kKjgDwAAQBAJ
Hafner, D., Davidson, J., Vanhoucke, V.: TensorFlow agents: efficient batched reinforcement learning in TensorFlow. CoRR abs/1709.02878 (2017). http://arxiv.org/abs/1709.02878
Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan, New York (1994)
Huerta, I.I., Neira, D.A., Ortega, D.A., Varas, V., Godoy, J., Asín-Achá, R.: Improving the state-of-the-art in the traveling salesman problem: an anytime automatic algorithm selection. Expert Syst. Appl. 187, 115948 (2022). https://doi.org/10.1016/j.eswa.2021.115948. https://www.sciencedirect.com/science/article/pii/S0957417421013014
Karp, R.M.: Reducibility among Combinatorial Problems, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9
Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands-on Approach. Elsevier Science (2016)
NVIDIA: NVIDIA CUDA Compute Unified Device Architecture, Programming Guide. NVIDIA (2020)
NVIDIA: Nvidia: CUDA C++ Programming Guide, Design Guide. NVIDIA (2021)
Pacheco, P., Malensek, M.: An Introduction to Parallel Programming. Elsevier Science (2021). https://books.google.com.ar/books?id=rElkCwAAQBAJ
Perumalla, K., Alam, M.: Design considerations for GPU-based mixed integer programming on parallel computing platforms, chap. 27. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3458744.3473366
Pulido-López, D.G., García, M., Figueroa-García, J.C.: Fuzzy uncertainty in random variable generation: a cumulative membership function approach. In: Figueroa-García, J.C., López-Santana, E.R., Villa-Ramírez, J.L., Ferro-Escobar, R. (eds.) WEA 2017. CCIS, vol. 742, pp. 398–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66963-2_36
Rashid, M.H., McAndrew, I.: An efficient GPU framework for parallelizing combinatorial optimization heuristics. In: 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE), pp. 1–7 (2020). https://doi.org/10.1109/ICACCE49060.2020.9155072
Russell, S.J., Norvig, P.: Inteligencia artificial: un enfoque moderno. Pearson Prentice Hall, Madrid (2004)
Rutkowski, L., Jaworski, M., Duda, P.: Stream Data Mining: Algorithms and Their Probabilistic Properties. SBD, vol. 56. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-13962-9 https://books.google.com.ar/books?id=P0-NDwAAQBAJ
Schab, E.A., Casanova, C.A., Piccoli, M.F.: Reinforcement learning for VRP, April 2022. https://github.com/estebanschab/RL-VRP
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms (2017). arXiv preprint arXiv:1707.06347
Siddique, N., Adeli, H.: Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing. Wiley (2013). https://books.google.com.ar/books?id=CbpbuA0jvVgC
Singh, P., Manure, A.: Learn TensorFlow 2.0: Implement Machine Learning and Deep Learning Models with Python. Apress (2019). https://books.google.com.ar/books?id=3_rEDwAAQBAJ
Soyata, T.: GPU Parallel Program Development Using CUDA. T. Francis, Abingdon (2018)
Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (2018)
Terzo, O., Martinovič, J.: HPC, Big Data, and AI Convergence Towards Exascale: Challenge and Vision. CRC Press (2022). https://books.google.com.ar/books?id=2NpXEAAAQBAJ
Toomey, D.: Learning Jupyter 5: Explore Interactive Computing Using Python, Java, JavaScript, R, Julia, and JupyterLab, 2nd edn. Packt Publishing (2018). https://books.google.com.ar/books?id=8kZsDwAAQBAJ
Varón-Gaviria, C.A., Barbosa-Fontecha, J.L., Figueroa-García, J.C.: Fuzzy uncertainty in random variable generation: an \(\alpha \)-cut approach. In: Huang, D.-S., Hussain, A., Han, K., Gromiha, M.M. (eds.) ICIC 2017. LNCS (LNAI), vol. 10363, pp. 264–273. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63315-2_23
Wilt, N.: The CUDA Handbook: A Comprehensive Guide to GPU Programming. Addison Wesley (2020). https://books.google.com.ar/books?id=lUVQswEACAAJ
Wintjen, M., Vlahutin, A.: Practical Data Analysis Using Jupyter Notebook: Learn How to Speak the Language of Data by Extracting Useful and Actionable Insights Using Python. Packt Publishing (2020). https://books.google.com.ar/books?id=tqTsDwAAQBAJ
Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Commun. ACM 37(3), 77–84 (1994). https://doi.org/10.1145/175247.175255
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Schab, E., Casanova, C., Piccoli, F. (2022). Solving an Instance of a Routing Problem Through Reinforcement Learning and High Performance Computing. In: Rucci, E., Naiouf, M., Chichizola, F., De Giusti, L., De Giusti, A. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2022. Communications in Computer and Information Science, vol 1634. Springer, Cham. https://doi.org/10.1007/978-3-031-14599-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-14599-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14598-8
Online ISBN: 978-3-031-14599-5
eBook Packages: Computer ScienceComputer Science (R0)