Skip to main content

A Movement Adjustment Method for DQN-Based Autonomous Aerial Vehicle Mobility: Performance Evaluation of AAV Mobility Control Method in Corner Environment

  • Conference paper
  • First Online:
Advances in Intelligent Networking and Collaborative Systems (INCoS 2022)

Abstract

The Deep Q-Network (DQN) is a deep reinforcement learning method using Convolution Neural Network (CNN) as a function approximation of Q-values in the Q-learning algorithm. The DQN combines the neural fitting Q-iteration and experience replay, shares the hidden layer of the action value function for each action pattern and can stabilize learning even with nonlinear functions such as CNN. However, there are some points where learning is difficult to progress for problems with complex operations and rewards, or problems where it takes a long time to obtain a reward. In this paper, we present a DQN-based Autonomous Aerial Vehicle (AAV) mobility control method and show the performance evaluation results for a corner environment scenario. The performance evaluation results show that the proposed method can reach the destination and can decrease movement fluctuations in a corner environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stöcker, C., et al.: Review of the current state of UAV regulations. Remote Sens. 9(5), 1–26 (2017)

    Article  Google Scholar 

  2. Popović, M., et al.: An informative path planning framework for UAV-based terrain monitoring. Auton. Robot. 44, 889–911 (2020). https://doi.org/10.1007/s10514-020-09903-2

    Article  Google Scholar 

  3. Nguyen, H., et al.: LAVAPilot: lightweight UAV trajectory planner with situational awareness for embedded autonomy to track and locate radio-tags, pp. 1–8. arXiv:2007.15860 (2020)

  4. Saito, N., Oda, T., Hirata, A., Hirota, Y., Hirota, M., Katayama, K.: Design and implementation of a DQN based AAV. In: Barolli, L., Takizawa, M., Enokido, T., Chen, H.-C., Matsuo, K. (eds.) BWCCA 2020. LNNS, vol. 159, pp. 321–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61108-8_32

    Chapter  Google Scholar 

  5. Oda, T., et al.: Design and implementation of a simulation system based on deep Q-network for mobile actor node control in wireless sensor and actor networks. In: Proceedings of The 31th IEEE International Conference on Advanced Information Networking and Applications Workshops (IEEE AINA-2017), pp. 195–200 (2017)

    Google Scholar 

  6. Oda, T., Elmazi, D., Cuka, M., Kulla, E., Ikeda, M., Barolli, L.: Performance evaluation of a deep Q-network based simulation system for actor node mobility control in wireless sensor and actor networks considering three-dimensional environment. In: Barolli, L., Woungang, I., Hussain, O.K. (eds.) INCoS 2017. LNDECT, vol. 8, pp. 41–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65636-6_4

    Chapter  Google Scholar 

  7. Oda, T., Kulla, E., Katayama, K., Ikeda, M., Barolli, L.: A deep Q-network based simulation system for actor node mobility control in WSANs considering three-dimensional environment: a comparison study for normal and uniform distributions. In: Barolli, L., Javaid, N., Ikeda, M., Takizawa, M. (eds.) CISIS 2018. AISC, vol. 772, pp. 842–852. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93659-8_77

    Chapter  Google Scholar 

  8. Saito, N., Oda, T., Hirata, A., Nagai, Y., Hirota, M., Katayama, K.: Proposal and evaluation of a Tabu list based DQN for AAV mobility. In: Barolli, L., Natwichai, J., Enokido, T. (eds.) EIDWT 2021. LNDECT, vol. 65, pp. 189–200. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70639-5_18

    Chapter  Google Scholar 

  9. Moulton, J., et al.: An autonomous surface vehicle for long term operations. In: Proceedings of MTS/IEEE OCEANS, pp. 1–10 (2018)

    Google Scholar 

  10. Oda, T., Ueda, C., Ozaki, R., Katayama, K.: Design of a deep Q-network based simulation system for actuation decision in ambient intelligence. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) WAINA 2019. AISC, vol. 927, pp. 362–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15035-8_34

    Chapter  Google Scholar 

  11. Oda, T., et al.: Design and implementation of an IoT-based e-learning testbed. Int. J. Web Grid Serv. 13(2), 228–241 (2017)

    Article  Google Scholar 

  12. Hirota, Y., Oda, T., Saito, N., Hirata, A., Hirota, M., Katatama, K.: Proposal and experimental results of an ambient intelligence for training on soldering iron holding. In: Barolli, L., Takizawa, M., Enokido, T., Chen, H.-C., Matsuo, K. (eds.) BWCCA 2020. LNNS, vol. 159, pp. 444–453. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61108-8_44

    Chapter  Google Scholar 

  13. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Article  Google Scholar 

  14. De Raedt, L.: Statistical relational learning: an inductive logic programming perspective. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 3–5. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_3

    Chapter  Google Scholar 

  15. Lin, L.J.: Reinforcement learning for robots using neural networks. Proceedings of technical report, DTIC Document (1993)

    Google Scholar 

  16. Lange, S., Riedmiller, M.: Deep auto-encoder neural networks in reinforcement learning. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN-2010), pp. 1–8 (2010)

    Google Scholar 

  17. Saito, N., Oda, T., Hirata, A., Yukawa, C., Hirota, M., Barolli, L.: Performance evaluation of a DQN-based autonomous aerial vehicle mobility control method in an indoor single-path environment with a staircase. In: Barolli, L., Kulla, E., Ikeda, M. (eds.) EIDWT 2022. LNDECT, vol. 118, pp. 417–429. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-95903-6_44

    Chapter  Google Scholar 

  18. Saito, N., et al.: Performance evaluation of a DQN-based autonomous aerial vehicle mobility control method in corner environment. In: Barolli, L., Hussain, F., Enokido, T. (eds.) AINA 2022. LNNS, vol. 450, pp. 361–372. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99587-4_31

    Chapter  Google Scholar 

  19. Saito, N., et al.: A Tabu list strategy based DQN for AAV mobility in indoor single-path environment: implementation and performance evaluation. Internet Things 14, 100394 (2021)

    Article  Google Scholar 

  20. Saito, N., Oda, T., Hirata, A., Yukawa, C., Kulla, E., Barolli, L.: A LiDAR based mobile area decision method for TLS-DQN: improving control for AAV mobility. In: Barolli, L. (ed.) 3PGCIC 2021. LNNS, vol. 343, pp. 30–42. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-89899-1_4

    Chapter  Google Scholar 

  21. Saito, N., Oda, T., Hirata, A., Toyoshima, K., Hirota, M., Barolli, L.: Simulation results of a DQN based AAV testbed in corner environment: a comparison study for normal DQN and TLS-DQN. In: Barolli, L., Yim, K., Chen, H.-C. (eds.) IMIS 2021. LNNS, vol. 279, pp. 156–167. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-79728-7_16

    Chapter  Google Scholar 

  22. Glorot, X., et al.: Deep sparse rectifier neural networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS-2011), pp. 315–323 (2011)

    Google Scholar 

  23. Glover, F.: Tabu search - part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP20K19793 and Grant for Promotion of OUS Research Project (OUS-RP-20-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Oda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saito, N. et al. (2022). A Movement Adjustment Method for DQN-Based Autonomous Aerial Vehicle Mobility: Performance Evaluation of AAV Mobility Control Method in Corner Environment. In: Barolli, L., Miwa, H. (eds) Advances in Intelligent Networking and Collaborative Systems. INCoS 2022. Lecture Notes in Networks and Systems, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-14627-5_5

Download citation

Publish with us

Policies and ethics