Abstract
We study the effect of varying perturbation strength on the fractal dimensions of Quadratic Assignment Problem (QAP) fitness landscapes induced by iterated local search (ILS). Fitness landscapes are represented as Local Optima Networks (LONs), which are graphs mapping algorithm search connectivity in a landscape. LONs are constructed for QAP instances and fractal dimension measurements taken from the networks. Thereafter, the interplay between perturbation strength, LON fractal dimension, and algorithm difficulty on the underlying combinatorial problems is analysed. The results show that higher-perturbation LONs also have higher fractal dimensions. ILS algorithm performance prediction using fractal dimension features may benefit more from LONs formed using a high perturbation strength; this model configuration enjoyed excellent performance. Around half of variance in Robust Taboo Search performance on the data-set used could be explained with the aid of fractal dimension features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mandelbrot, B.B.: Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Rosenblatt, M., Van Atta, C. (eds.) Statistical Models and Turbulence. LNP, vol. 12, pp. 333–351. Springer, Heidelberg (1972). https://doi.org/10.1007/3-540-05716-1_20
Mandelbrot, B.B., Fisher, A.J., Calvet, L.E.: A multifractal model of asset returns. In: Cowles Foundation Discussion Paper (1997)
Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 555–562. ACM (2008)
Thomson, S.L., Ochoa, G., Verel, S.: The fractal geometry of fitness landscapes at the local optima level. Nat. Comput. 21, 317–333 (2022)
Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment problem library. J. Global Optim. 10(4), 391–403 (1997). https://doi.org/10.1023/A:1008293323270
Taillard, E.: Comparison of iterative searches for the quadratic assignment problem. Locat. Sci. 3(2), 87–105 (1995)
Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res. 174(3), 1519–1539 (2006)
Liu, J.L., Yu, Z.G., Anh, V.: Determination of multifractal dimensions of complex networks by means of the sandbox algorithm. Chaos Interdisc. J. Nonlinear Sci. 25(2), 023–103 (2015)
Ding, Y., Liu, J.L., Li, X., Tian, Y.C., Yu, Z.G.: Computationally efficient sandbox algorithm for multifractal analysis of large-scale complex networks with tens of millions of nodes. Phys. Rev. E 103(4), 043303 (2021)
Ochoa, G., Herrmann, S.: Perturbation strength and the global structure of QAP fitness landscapes. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018, Part II. LNCS, vol. 11102, pp. 245–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_20
Taillard, É.: Robust taboo search for the quadratic assignment problem. Parallel Comput. 17(4–5), 443–455 (1991)
Song, C., Gallos, L.K., Havlin, S., Makse, H.A.: How to calculate the fractal dimension of a complex network: the box covering algorithm. J. Stat. Mech. Theory Exp. 2007(03), P03006 (2007)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Harrell, F.E., Jr., Lee, K.L., Califf, R.M., Pryor, D.B., Rosati, R.A.: Regression modelling strategies for improved prognostic prediction. Stat. Med. 3(2), 143–152 (1984)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Thomson, S.L., Ochoa, G., Verel, S. (2022). Fractal Dimension and Perturbation Strength: A Local Optima Networks View. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13398. Springer, Cham. https://doi.org/10.1007/978-3-031-14714-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-14714-2_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14713-5
Online ISBN: 978-3-031-14714-2
eBook Packages: Computer ScienceComputer Science (R0)