Skip to main content

Fractal Dimension and Perturbation Strength: A Local Optima Networks View

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13398))

Included in the following conference series:

  • 1844 Accesses

Abstract

We study the effect of varying perturbation strength on the fractal dimensions of Quadratic Assignment Problem (QAP) fitness landscapes induced by iterated local search (ILS). Fitness landscapes are represented as Local Optima Networks (LONs), which are graphs mapping algorithm search connectivity in a landscape. LONs are constructed for QAP instances and fractal dimension measurements taken from the networks. Thereafter, the interplay between perturbation strength, LON fractal dimension, and algorithm difficulty on the underlying combinatorial problems is analysed. The results show that higher-perturbation LONs also have higher fractal dimensions. ILS algorithm performance prediction using fractal dimension features may benefit more from LONs formed using a high perturbation strength; this model configuration enjoyed excellent performance. Around half of variance in Robust Taboo Search performance on the data-set used could be explained with the aid of fractal dimension features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.seas.upenn.edu/qaplib/.

  2. 2.

    https://hmakse.ccny.cuny.edu/.

  3. 3.

    https://github.com/sarahlouisethomson/fractal-dimension-perturbation-strength.

  4. 4.

    https://github.com/sarahlouisethomson/compute-fractal-dimension-local-optima-networks.

References

  1. Mandelbrot, B.B.: Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In: Rosenblatt, M., Van Atta, C. (eds.) Statistical Models and Turbulence. LNP, vol. 12, pp. 333–351. Springer, Heidelberg (1972). https://doi.org/10.1007/3-540-05716-1_20

  2. Mandelbrot, B.B., Fisher, A.J., Calvet, L.E.: A multifractal model of asset returns. In: Cowles Foundation Discussion Paper (1997)

    Google Scholar 

  3. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 555–562. ACM (2008)

    Google Scholar 

  4. Thomson, S.L., Ochoa, G., Verel, S.: The fractal geometry of fitness landscapes at the local optima level. Nat. Comput. 21, 317–333 (2022)

    Article  MathSciNet  Google Scholar 

  5. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment problem library. J. Global Optim. 10(4), 391–403 (1997). https://doi.org/10.1023/A:1008293323270

    Article  MathSciNet  MATH  Google Scholar 

  6. Taillard, E.: Comparison of iterative searches for the quadratic assignment problem. Locat. Sci. 3(2), 87–105 (1995)

    Article  Google Scholar 

  7. Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res. 174(3), 1519–1539 (2006)

    Article  MathSciNet  Google Scholar 

  8. Liu, J.L., Yu, Z.G., Anh, V.: Determination of multifractal dimensions of complex networks by means of the sandbox algorithm. Chaos Interdisc. J. Nonlinear Sci. 25(2), 023–103 (2015)

    Article  MathSciNet  Google Scholar 

  9. Ding, Y., Liu, J.L., Li, X., Tian, Y.C., Yu, Z.G.: Computationally efficient sandbox algorithm for multifractal analysis of large-scale complex networks with tens of millions of nodes. Phys. Rev. E 103(4), 043303 (2021)

    Article  MathSciNet  Google Scholar 

  10. Ochoa, G., Herrmann, S.: Perturbation strength and the global structure of QAP fitness landscapes. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018, Part II. LNCS, vol. 11102, pp. 245–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_20

    Chapter  Google Scholar 

  11. Taillard, É.: Robust taboo search for the quadratic assignment problem. Parallel Comput. 17(4–5), 443–455 (1991)

    Article  MathSciNet  Google Scholar 

  12. Song, C., Gallos, L.K., Havlin, S., Makse, H.A.: How to calculate the fractal dimension of a complex network: the box covering algorithm. J. Stat. Mech. Theory Exp. 2007(03), P03006 (2007)

    Article  Google Scholar 

  13. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  14. Harrell, F.E., Jr., Lee, K.L., Califf, R.M., Pryor, D.B., Rosati, R.A.: Regression modelling strategies for improved prognostic prediction. Stat. Med. 3(2), 143–152 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah L. Thomson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomson, S.L., Ochoa, G., Verel, S. (2022). Fractal Dimension and Perturbation Strength: A Local Optima Networks View. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13398. Springer, Cham. https://doi.org/10.1007/978-3-031-14714-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14714-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14713-5

  • Online ISBN: 978-3-031-14714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics