Skip to main content

Finding Knees in Bayesian Multi-objective Optimization

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13398))

Included in the following conference series:

Abstract

Multi-objective optimization requires many evaluations to identify a sufficiently dense approximation of the Pareto front. Especially for a higher number of objectives, extracting the Pareto front might not be easy nor cheap. On the other hand, the Decision-Maker is not always interested in the entire Pareto front, and might prefer a solution where there is a desirable trade-off between different objectives. An example of an attractive solution is the knee point of the Pareto front, although the current literature differs on the definition of a knee. In this work, we propose to detect knee solutions in a data-efficient manner (i.e., with a limited number of time-consuming evaluations), according to two definitions of knees. In particular, we propose several novel acquisition functions in the Bayesian Optimization framework for detecting these knees, which allows for scaling to many objectives. The suggested acquisition functions are evaluated on various benchmarks with promising results.

This work has been supported by the Flemish Government under the ‘Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen’ and the ‘Fonds Wetenschappelijk Onderzoek (FWO)’ programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berkeley, J., et al.: Trieste, February 2022. https://github.com/secondmind-labs/trieste

  2. Bhattacharjee, K.S., Singh, H.K., Ryan, M., Ray, T.: Bridging the gap: many-objective optimization and informed decision-making. IEEE Trans. Evol. Comput. 21(5), 813–820 (2017). https://doi.org/10.1109/TEVC.2017.2687320

    Article  Google Scholar 

  3. Blank, J., Deb, K.: pymoo: multi-objective optimization in python. IEEE Access 8, 89497–89509 (2020)

    Article  Google Scholar 

  4. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_73

    Chapter  Google Scholar 

  5. Chand, S., Wagner, M.: Evolutionary many-objective optimization: a quick-start guide. Surv. Oper. Res. Manage. Sci. 20(2), 35–42 (2015)

    MathSciNet  Google Scholar 

  6. Couckuyt, I., Deschrijver, D., Dhaene, T.: Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization. J. Global Optim. 60(3), 575–594 (2013). https://doi.org/10.1007/s10898-013-0118-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC 2002 (Cat. No.02TH8600). vol. 1, pp. 825–830 (2002). https://doi.org/10.1109/CEC.2002.1007032

  8. Emmerich, M., Giannakoglou, K., Naujoks, B.: Single- and multiobjective evolutionary optimization assisted by gaussian random field metamodels. IEEE Trans. Evol. Comput. 10(4), 421–439 (2006). https://doi.org/10.1109/TEVC.2005.859463

    Article  Google Scholar 

  9. Hakanen, J., Knowles, J.D.: On using decision maker preferences with ParEGO. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_20

    Chapter  Google Scholar 

  10. Hua, Y., Liu, Q., Hao, K., Jin, Y.: A survey of evolutionary algorithms for multi-objective optimization problems with irregular pareto fronts. IEEE/CAA J. Automatica Sinica 8(2), 303–318 (2021). https://doi.org/10.1109/JAS.2021.1003817

    Article  MathSciNet  Google Scholar 

  11. Indraneel, D.: On characterizing the “knee” of the Pareto curve based on normal-boundary intersection. Struct. Optim. 18(2), 107–115 (1999). https://doi.org/10.1007/BF01195985

  12. Jones, D.: A taxonomy of global optimization methods based on response surfaces. J. Global Optim. 21, 345–383 (2001). https://doi.org/10.1023/A:1012771025575

    Article  MathSciNet  MATH  Google Scholar 

  13. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  14. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)

    Article  Google Scholar 

  15. Ma, X., Yu, Y., Li, X., Qi, Y., Zhu, Z.: A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 24(4), 634–649 (2020). https://doi.org/10.1109/TEVC.2020.2978158

    Article  Google Scholar 

  16. Minasny, B., McBratney, A.B.: The matérn function as a general model for soil variograms. Geoderma 128(3), 192–207 (2005). https://doi.org/10.1016/j.geoderma.2005.04.003, pedometrics 2003

  17. Mockus, J.: Bayesian Approach to global Optimization: Theory and Applications, vol. 37. Springer (1989). https://doi.org/10.1007/978-94-009-0909-0

  18. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. Towards Global Optim. 2(117–129), 2 (1978)

    MATH  Google Scholar 

  19. Picheny, V., Wagner, T., Ginsbourger, D.: A benchmark of kriging-based infill criteria for noisy optimization. Struct. Multidiscip. Optim. 48, 607–626 (2013). https://doi.org/10.1007/s00158-013-0919-4

    Article  Google Scholar 

  20. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning, 1st edn. The MIT Press, Cambridge (2005)

    Book  Google Scholar 

  21. Ray, T., Singh, H.K., Rahi, K.H., Rodemann, T., Olhofer, M.: Towards identification of solutions of interest for multi-objective problems considering both objective and variable space information. Appl. Soft Comput. 119, 108505 (2022). https://doi.org/10.1016/j.asoc.2022.108505

    Article  Google Scholar 

  22. Rojas-Gonzalez, S., Van Nieuwenhuyse, I.: A survey on kriging-based infill algorithms for multiobjective simulation optimization. Comput. Oper. Res. 116, 104869 (2020)

    Article  MathSciNet  Google Scholar 

  23. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3), 440–462 (2017). https://doi.org/10.1109/TEVC.2016.2608507

    Article  Google Scholar 

  24. Yu, G., Jin, Y., Olhofer, M.: Benchmark problems and performance indicators for search of knee points in multiobjective optimization. IEEE Trans. Cybern. 50(8), 3531–3544 (2020). https://doi.org/10.1109/TCYB.2019.2894664

    Article  Google Scholar 

  25. Yu, G., Ma, L., Jin, Y., Du, W., Liu, Q., Zhang, H.: A survey on knee-oriented multi-objective evolutionary optimization. IEEE Trans. Evol. Comput. 1 (2022). https://doi.org/10.1109/TEVC.2022.3144880

  26. Zhang, K., Yen, G.G., He, Z.: Evolutionary algorithm for knee-based multiple criteria decision making. IEEE Trans. Cybern. 51(2), 722–735 (2021). https://doi.org/10.1109/TCYB.2019.2955573

    Article  Google Scholar 

  27. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003). https://doi.org/10.1109/TEVC.2003.810758

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Heidari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heidari, A., Qing, J., Rojas Gonzalez, S., Branke, J., Dhaene, T., Couckuyt, I. (2022). Finding Knees in Bayesian Multi-objective Optimization. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13398. Springer, Cham. https://doi.org/10.1007/978-3-031-14714-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14714-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14713-5

  • Online ISBN: 978-3-031-14714-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics