Lecture Notes in Computer Science 13399

Founding Editors

Gerhard Goos

Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis

Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA

Wen Gao

Peking University, Beijing, China

Bernhard Steffen

TU Dortmund University, Dortmund, Germany

Moti Yung

Columbia University, New York, NY, USA

More information about this series at https://link.springer.com/bookseries/558

Günter Rudolph · Anna V. Kononova · Hernán Aguirre · Pascal Kerschke · Gabriela Ochoa · Tea Tušar (Eds.)

Parallel Problem Solving from Nature – PPSN XVII

17th International Conference, PPSN 2022 Dortmund, Germany, September 10–14, 2022 Proceedings, Part II

Editors
Günter Rudolph D
TU Dortmund
Dortmund, Germany

Hernán Aguirre D Shinshu University Nagano, Japan

Gabriela Ochoa D University of Stirling Stirling, UK Anna V. Kononova Leiden University
Leiden, The Netherlands

Pascal Kerschke D Technische Universität Dresden Dresden, Germany

Tea Tušar D

Jožef Stefan Institute
Ljubljana, Slovenia

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-031-14720-3 ISBN 978-3-031-14721-0 (eBook) https://doi.org/10.1007/978-3-031-14721-0

@ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Chapters 19, 24 and 35 are licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapters.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The first major gathering of people interested in discussing natural paradigms and their application to solve real-world problems in Europe took place in Dortmund, Germany, in 1990. What was planned originally as a small workshop with about 30 participants finally grew into an international conference named Parallel Problem Solving from Nature (PPSN) with more than 100 participants. The interest in the topics of the conference has increased steadily ever since leading to the pleasant necessity of organizing PPSN conferences biennially within the European region.

In times of a pandemic, it is difficult to find a host for a conference that should be held locally if possible. To ensure the continuation of the conference series, the 17th edition, PPSN 2022, returned to its birthplace in Dortmund. But even at the time of writing this text, it is unclear whether the conference can be held on-site or whether we shall have to switch to virtual mode at short notice.

Therefore, we are pleased that many researchers shared our optimism by submitting their papers for review. We received 185 submissions from which the program chairs have selected the top 85 after an extensive peer-review process. Not all decisions were easy to make but in all cases we benefited greatly from the careful reviews provided by the international Program Committee consisting of 223 scientists. Most of the submissions received four reviews, but all of them got at least three reviews. This led to a total of 693 reviews. Thanks to these reviews we were able to decide about acceptance on a solid basis.

The papers included in these proceedings have been assigned to 12 fuzzy clusters, entitled Automated Algorithm Selection and Configuration, Bayesian- and Surrogate-Assisted Optimization, Benchmarking and Performance Measures, Combinatorial Optimization, (Evolutionary) Machine Learning and Neuroevolution, Evolvable Hardware and Evolutionary Robotics, Fitness Landscape Modeling and Analysis, Genetic Programming, Multi-Objective Optimization, Numerical Optimization, Real-World Applications, and Theoretical Aspects of Nature-Inspired Optimization, that can hardly reflect the true variety of research topics presented in the proceedings at hand. Following the tradition and spirit of PPSN, all papers were presented as posters. The 7 poster sessions consisting of about 12 papers each were compiled orthogonally to the fuzzy clusters mentioned above to cover the range of topics as widely as possible. As a consequence, participants with different interests would find some relevant papers in every session and poster presenters were able to discuss related work in sessions other than their own. As usual, the conference also included one day with workshops (Saturday), one day with tutorials (Sunday), and three invited plenary talks (Monday to Wednesday) for free.

Needless to say, the success of such a conference depends on the authors, reviewers, and organizers. We are grateful to all authors for submitting their best and latest work, to all the reviewers for the generous way they spent their time and provided their valuable expertise in preparing the reviews, to the workshop organizers and tutorial presenters

Preface

vi

for their contributions enhancing the value of the conference, and to the local organizers who helped to make PPSN 2022 happen.

Last but not least, we would like to thank for the donations of the *Gesellschaft der Freunde der Technischen Universität Dortmund e.V.* (*GdF*) and the *Alumni der Informatik Dortmund e.V.* (*aido*). We are grateful for Springer's long-standing support of this conference series. Finally, we thank the *Deutsche Forschungsgemeinschaft* (*DFG*) for providing financial backing.

July 2022

Günter Rudolph Anna V. Kononova Hernán Aguirre Pascal Kerschke Gabriela Ochoa Tea Tušar

Organization

General Chair

Günter Rudolph TU Dortmund University, Germany

Honorary Chair

Hans-Paul Schwefel TU Dortmund University, Germany

Program Committee Chairs

Hernán Aguirre Shinshu University, Japan
Pascal Kerschke TU Dresden, Germany
Gabriela Ochoa University of Stirling, UK
Tea Tušar Jožef Stefan Institute, Slovenia

Proceedings Chair

Anna V. Kononova Leiden University, The Netherlands

Tutorial Chair

Heike Trautmann University of Münster, Germany

Workshop Chair

Christian Grimme University of Münster, Germany

Publicity Chairs

Nicolas Fischöder TU Dortmund University, Germany Peter Svoboda TU Dortmund University, Germany

Social Media Chair

Roman Kalkreuth TU Dortmund University, Germany

Digital Fallback Chair

Hestia Tamboer Leiden University, The Netherlands

Steering Committee

Thomas Bäck Leiden University, The Netherlands

David W. Corne Heriot-Watt University, UK
Carlos Cotta Universidad de Málaga, Spain
Kenneth De Jong George Mason University, USA

Gusz E. Eiben Vrije Universiteit Amsterdam, The Netherlands

Bogdan Filipič Jožef Stefan Institute, Slovenia
Emma Hart Edinburgh Napier University, UK
Juan Julián Merelo Guervós Universida de Granada, Spain
Günter Rudolph TU Dortmund University, Germany
Thomas P. Runarsson University of Iceland, Iceland
Robert Schaefer University of Krakow, Poland

Marc Schoenauer Inria, France

Xin Yao University of Birmingham, UK

Program Committee

Jason Adair University of Stirling, UK

Michael Affenzeller University of Applied Sciences Upper Austria,

Austria

Hernán Aguirre Shinshu University, Japan

Brad Alexander University of Adelaide, Australia
Richard Allmendinger University of Manchester, UK
Marie Anastacio Leiden University, The Netherlands

Denis Antipov ITMO University, Russia
Claus Aranha University of Tsukuba, Japan
Rolando Armas Yachay Tech University, Ecuador
Dirk Arnold Dalhousie University, Canada

Anne Auger Inria, France

Dogan Aydin Dumlupinar University, Turkey Jaume Bacardit Newcastle University, UK

Thomas Bäck Leiden University, The Netherlands

Helio Barbosa Laboratório Nacional de Computação Científica,

Brazi

Andreas Beham University of Applied Sciences Upper Austria,

Austria

Heder Bernardino Universidade Federal de Juiz de Fora, Brazil Hans-Georg Beyer Vorarlberg University of Applied Sciences,

Austria

Julian Blank Michigan State University, USA Aymeric Blot University College London, UK

Christian Blum Spanish National Research Council, Spain

Peter Bosman Centrum Wiskunde & Informatica,

The Netherlands

Jakob BossekUniversity of Münster, GermanyJürgen BrankeUniversity of Warwick, UK

Dimo Brockhoff Inria, France

Alexander Brownlee University of Stirling, UK

Larry Bull University of the West of England, UK

Maxim Buzdalov ITMO University, Russia
Arina Buzdalova ITMO University, Russia
Stefano Cagnoni University of Parma, Italy
Fabio Caraffini De Montfort University, UK

Ying-Ping Chen National Chiao Tung University, Taiwan

Francisco Chicano University of Málaga, Spain Miroslav Chlebik University of Sussex, UK Sung-Bae Cho Yonsei University, South Korea Tinkle Chugh University of Exeter, UK Carlos Coello Coello CINVESTAV-IPN, Mexico Ernesto Costa University of Coimbra, Portugal Carlos Cotta Universidad de Málaga, Spain Nguyen Dang St Andrews University, UK Kenneth De Jong George Mason University, USA Bilel Derbel University of Lille, France

André Deutz Leiden University, The Netherlands

Benjamin Doerr Ecole Polytechnique, France
Carola Doerr Sorbonne University, France
John Drake University of Leicester, UK

Rafal Drezewski AGH University of Science and Technology,

Poland

Paul Dufossé Inria, France

Gusz Eiben Vrije Universiteit Amsterdam, The Netherlands

Mohamed El Yafrani Aalborg University, Denmark
Michael Emmerich Leiden University, The Netherlands
Andries Engelbrecht University of Stellenbosch, South Africa
Anton Eremeev Omsk Branch of Sobolev Institute of

Mathematics, Russia

Richard Everson University of Exeter, UK

Pedro Ferreira Universidade de Lisboa, Portugal

Jonathan Fieldsend University of Exeter, UK

Bogdan Filipič Jožef Stefan Institute, Slovenia

Steffen Finck Vorarlberg University of Applied Sciences,

Austria

Andreas Fischbach TH Köln, Germany

Marcus Gallagher University of Queensland, Australia

José García-Nieto University of Málaga, Spain Mario Giacobini University of Turin, Italy

Kyriakos Giannakoglou National Technical University of Athens, Greece

Tobias Glasmachers Ruhr-Universität Bochum, Germany Christian Grimme University of Münster, Germany Andreia Guerreiro University of Coimbra, Portugal

Alexander Hagg Bonn-Rhein-Sieg University of Applied Sciences,

Germany

Julia Handl
University of Manchester, UK
Jin-Kao Hao
University of Angers, France
Emma Hart
Napier University, UK
Verena Heidrich-Meisner
University Kiel, Germany
TU Dresden, Germany

Carlos Henggeler Antunes University of Coimbra, Portugal

Martin Holena Institute of Computer Science, Czech Republic

Daniel Horn

Christian Igel

University of Copenhagen, Denmark

Hisao Ishibuchi

Domagoj Jakobović

Thomas Jansen

TU Dortmund University, Germany

University of Copenhagen, Denmark

Osaka Prefecture University, Japan

University of Zagreb, Croatia

Aberystwyth University, UK

Laetitia Jourdan Inria, CNRS, CRIStAL, Université de Lille,

France

George Karakostas McMaster University, Canada
Pascal Kerschke TU Dresden, Germany
Marie-Eleonore Kessaci Université de Lille, France
Ahmed Kheiri Lancaster University, UK
Wolfgang Konen TH Köln, Germany

Lars Kotthoff University of Wyoming, USA
Oliver Kramer Universität Oldenburg, Germany
Oswin Krause University of Copenhagen, Germany
Krzysztof Krawiec Poznan University of Technology, Poland

Martin S. Krejca Hasso Plattner Institute, Germany
Timo Kötzing Hasso Plattner Institute, Germany
William La Cava University of Pennsylvania, USA
William B. Langdon University College London, UK
Frederic Lardeux University of Angers, France
Per Kristian Lehre University of Birmingham, UK
Johannes Lengler ETH Zurich, Switzerland

Ke LiUniversity of Exeter, UKArnaud LiefoogheUniversity of Lille, FranceGiosuè Lo BoscoUniversità di Palermo, ItalyFernando LoboUniversity of Algarve, PortugalDaniele LoiaconoPolitecnico di Milano, ItalyNuno LourençoUniversity of Coimbra, Portugal

Jose A. Lozano University of the Basque Country, Spain Rodica Ioana Lung Babes-Bolyai University, Romania

Chuan Luo Peking University, China Gabriel Luque University of Málaga, Spain

Evelyne Lutton INRAE, France

Manuel López-Ibáñez University of Málaga, Spain Penousal Machado University of Coimbra, Portugal

Kaitlin Maile ISAE-SUPAERO, France

Katherine Malan University of South Africa, South Africa

Vittorio Maniezzo University of Bologna, Italy

Elena Marchiori Radboud University, The Netherlands
Asep Maulana Tilburg University, The Netherlands
Giancarlo Mauri University of Milano-Bicocca, Italy
Jacek Mańdziuk Warsaw University of Technology, Poland

James McDermott National University of Ireland, Galway, Ireland

Jörn MehnenUniversity of Strathclyde, UKMarjan MernikUniversity of Maribor, Slovenia

Olaf Mersmann TH Köln, Germany

Silja Meyer-Nieberg Bundeswehr University Munich, Germany

Efrén Mezura-Montes University of Veracruz, Mexico

Krzysztof Michalak Wroclaw University of Economics, Poland

Kaisa Miettinen University of Jyväskylä, Finland Edmondo Minisci University of Strathclyde, UK Gara Miranda University of La Laguna, Spain Mustafa Misir Istinye University, Turkey

Hugo Monzón RIKEN, Japan

Sanaz Mostaghim Fraunhofer IWS, Germany

Mario Andres Muñoz Acosta University of Melbourne, Australia

Boris Naujoks TH Köln, Germany

Antonio J. Nebro University of Málaga, Spain
Aneta Neumann University of Adelaide, Australia
Frank Neumann University of Adelaide, Australia
Michael O'Neill University College Dublin, Ireland

Pietro S. Oliveto University of Sheffield, UK

Una-May O'Reilly MIT, USA

José Carlos Ortiz-Bayliss Tecnológico de Monterrey, Mexico

Patryk Orzechowski University of Pennsylvania, USA Ender Özcan University of Nottingham, UK Gregor Papa Jožef Stefan Institute, Slovenia

Gisele Pappa Universidade Federal de Minas Gerais, Brazil

Luis Paquete University of Coimbra, Portugal Andrew J. Parkes University of Nottingham, UK David Pelta University of Granada, Spain

Pontificia Universidad Católica de Valparaíso, Leslie Perez-Caceres

Chile

Stjepan Picek Delft University of Technology, The Netherlands

Martin Pilat Charles University, Czech Republic

University of KwaZulu-Natal, South Africa Nelishia Pillav Petr Pošík Czech Technical University in Prague,

Czech Republic

Raphael Prager University of Münster, Germany

Michał Przewoźniczek Wroclaw University of Science and Technology,

Poland

Chao Qian University of Science and Technology of China,

China

Xiaoyu Oin University of Birmingham, UK Alma Rahat Swansea University, UK Khaled Rasheed University of Georgia, USA

Frederik Rehbach TH Köln, Germany

Universidade Federal de Goiás, Brazil Lucas Ribeiro Eduardo Rodriguez-Tello CINVESTAV, Tamaulipas, Mexico University of Bologna, Italy Andrea Roli Jonathan Rowe University of Birmingham, UK Günter Rudolph TU Dortmund University, Germany

Thomas A. Runkler Siemens Corporate Technology, Germany Conor Ryan University of Limerick, Ireland

University of Angers, France Robert Schaefer AGH University of Science and Technology,

Poland

Andrea Schaerf University of Udine, Italy Binghamton University, USA David Schaffer

Lennart Schäpermeier TU Dresden, Germany

Frédéric Saubion

Inria Saclay Île-de-France, France Marc Schoenauer CINVESTAV-IPN, Mexico Oliver Schütze

Michele Sebag CNRS, Université Paris-Saclay, France Moritz Seiler University of Münster, Germany

Bernhard Sendhoff Honda Research Institute Europe GmbH,

Germany

Marc Sevaux Université de Bretagne Sud, France
Shinichi Shirakawa Yokohama National University, Japan
Moshe Sipper Ben-Gurion University of the Negev, Israel
Jim Smith University of the West of England, UK
Jorge Alberto Soria-Alcaraz Universidad de Guanajuato, Mexico

Patrick Spettel FH Vorarlberg, Austria
Giovanni Squillero Politecnico di Torino, Italy
Catalin Stoean University of Craiova, Romania
Thomas Stützle Université Libre de Bruxelles, Belgium
Mihai Suciu Babes-Bolyai University, Romania
Dirk Sudholt University of Sheffield, UK

Dirk Sudholt University of Sheffield, UK
Andrew Sutton University of Minnesota, USA

Ricardo H. C. Takahashi Universidade Federal de Minas Gerais, Brazil Sara Tari Université du Littoral Côte d'Opale, France

Daniel Tauritz Auburn University, USA

Dirk Thierens Utrecht University, The Netherlands

Sarah Thomson University of Stirling, UK
Kevin Tierney Bielefeld University, Germany
Renato Tinós University of São Paulo, Brazil

Alberto Tonda INRAE, France

Leonardo Trujillo Instituto Tecnológico de Tijuana, Mexico

Tea Tušar Jožef Stefan Institute, Slovenia
Ryan J. Urbanowicz University of Pennsylvania, USA
Koen van der Blom Leiden University, The Netherlands
Bas van Stein Leiden University, The Netherlands

Nadarajen Veerapen University of Lille, France

Sébastien Verel Université du Littoral Côte d'Opale, France

Diederick Vermetten Leiden University, The Netherlands Marco Virgolin Centrum Wiskunde & Informatica,

The Netherlands

Aljoša Vodopija Jožef Stefan Institute, Slovenia Markus Wagner University of Adelaide, Australia

Stefan Wagner University of Applied Sciences Upper Austria,

Austria

Hao Wang Leiden University, The Netherlands Hui Wang Leiden University, The Netherlands

Elizabeth Wanner CEFET, Brazil

Marcel Wever LMU Munich, Germany Dennis Wilson ISAE-SUPAERO, France

Carsten Witt Technical University of Denmark, Denmark

Man Leung Wong Lingnan University, Hong Kong

Bing Xue Victoria University of Wellington, New Zealand

xiv Organization

Kaifeng Yang University of Applied Sciences Upper Austria,

Austria

Shengxiang Yang De Montfort University, UK

Estefania Yap University of Melbourne, Australia Furong Ye Leiden University, The Netherlands

Martin Zaefferer TH Köln, Germany

Aleš Zamuda University of Maribor, Slovenia

Saúl Zapotecas Instituto Nacional de Astrofísica, Óptica y

Electrónica, Mexico

Christine Zarges Aberystwyth University, UK

Mengjie Zhang Victoria University of Wellington, New Zealand

Keynote Speakers

Doina Bucur University of Twente, The Netherlands

Claudio Semini IIT, Genoa, Italy

Travis Waller TU Dresden, Germany

Contents – Part II

Genetic	Programmi	ng

Digging into Semantics: Where Do Search-Based Software Repair	
Methods Search? Hammad Ahmad, Padriac Cashin, Stephanie Forrest, and Westley Weimer	3
Gene-pool Optimal Mixing in Cartesian Genetic Programming Joe Harrison, Tanja Alderliesten, and Peter A. N. Bosman	19
Genetic Programming for Combining Directional Changes Indicators in International Stock Markets Xinpeng Long, Michael Kampouridis, and Panagiotis Kanellopoulos	33
Importance-Aware Genetic Programming for Automated Scheduling Heuristics Learning in Dynamic Flexible Job Shop Scheduling Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang	48
Towards Discrete Phenotypic Recombination in Cartesian Genetic Programming	63
Multi-Objective Optimization	
A General Architecture for Generating Interactive Decomposition-Based MOEAs Giomara Lárraga and Kaisa Miettinen	81
An Exact Inverted Generational Distance for Continuous Pareto Front	96
Direction Vector Selection for R2-Based Hypervolume Contribution Approximation	110
Do We Really Need to Use Constraint Violation in Constrained Evolutionary Multi-objective Optimization?	124
Dynamic Multi-modal Multi-objective Optimization: A Preliminary Study Yiming Peng and Hisao Ishibuchi	138

Algorithm James Brookhouse and Alex Freitas	151
Greedy Decremental Quick Hypervolume Subset Selection Algorithms Andrzej Jaszkiewicz and Piotr Zielniewicz	164
Hybridizing Hypervolume-Based Evolutionary Algorithms and Gradient Descent by Dynamic Resource Allocation	179
Identifying Stochastically Non-dominated Solutions Using Evolutionary Computation	193
Large-Scale Multi-objective Influence Maximisation with Network Downscaling	207
Multi-Objective Evolutionary Algorithm Based on the Linear Assignment Problem and the Hypervolume Approximation Using Polar Coordinates (MOEA-LAPCO) Diana Cristina Valencia-Rodríguez and Carlos Artemio Coello Coello	221
New Solution Creation Operator in MOEA/D for Faster Convergence	234
Obtaining Smoothly Navigable Approximation Sets in Bi-objective Multi-modal Optimization Renzo J. Scholman, Anton Bouter, Leah R. M. Dickhoff, Tanja Alderliesten, and Peter A. N. Bosman	247
T-DominO: Exploring Multiple Criteria with Quality-Diversity and the Tournament Dominance Objective Adam Gaier, James Stoddart, Lorenzo Villaggi, and Peter J. Bentley	263
Numerical Optimizaiton	
Collective Learning of Low-Memory Matrix Adaptation for Large-Scale Black-Box Optimization	281
Recombination Weight Based Selection in the DTS-CMA-ES	295

Contents – Part II	XV11
The (1+1)-ES Reliably Overcomes Saddle Points	309
Real-World Applications	
Evolutionary Time-Use Optimization for Improving Children's Health Outcomes Yue Xie, Aneta Neumann, Ty Stanford, Charlotte Lund Rasmussen, Dorothea Dumuid, and Frank Neumann	323
Iterated Local Search for the eBuses Charging Location Problem	338
Multi-view Clustering of Heterogeneous Health Data: Application to Systemic Sclerosis Adán José-García, Julie Jacques, Alexandre Filiot, Julia Handl, David Launay, Vincent Sobanski, and Clarisse Dhaenens	352
Specification-Driven Evolution of Floor Plan Design	368
Surrogate-Assisted Multi-objective Optimization for Compiler Optimization Sequence Selection Guojun Gao, Lei Qiao, Dong Liu, Shifei Chen, and He Jiang	382
Theoretical Aspects of Nature-Inspired Optimization	
A First Runtime Analysis of the NSGA-II on a Multimodal Problem Benjamin Doerr and Zhongdi Qu	399
Analysis of Quality Diversity Algorithms for the Knapsack Problem	413
Better Running Time of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) by Using Stochastic Tournament Selection	428
Escaping Local Optima with Local Search: A Theory-Driven Discussion Tobias Friedrich, Timo Kötzing, Martin S. Krejca, and Amirhossein Rajabi	442
Evolutionary Algorithms for Cardinality-Constrained Ising Models	456

General Univariate Estimation-of-Distribution Algorithms	470
Population Diversity Leads to Short Running Times of Lexicase Selection Thomas Helmuth, Johannes Lengler, and William La Cava	485
Progress Rate Analysis of Evolution Strategies on the Rastrigin Function: First Results Amir Omeradzic and Hans-Georg Beyer	499
Running Time Analysis of the (1+1)-EA Using Surrogate Models on OneMax and LeadingOnes	512
Runtime Analysis of Simple Evolutionary Algorithms for the Chance-Constrained Makespan Scheduling Problem	526
Runtime Analysis of the (1+1) EA on Weighted Sums of Transformed Linear Functions Frank Neumann and Carsten Witt	542
Runtime Analysis of Unbalanced Block-Parallel Evolutionary Algorithms Brahim Aboutaib and Andrew M. Sutton	555
Self-adjusting Population Sizes for the $(1, \lambda)$ -EA on Monotone Functions Marc Kaufmann, Maxime Larcher, Johannes Lengler, and Xun Zou	569
Theoretical Study of Optimizing Rugged Landscapes with the cGA Tobias Friedrich, Timo Kötzing, Frank Neumann, and Aishwarya Radhakrishnan	586
Towards Fixed-Target Black-Box Complexity Analysis Dmitry Vinokurov and Maxim Buzdalov	600
Two-Dimensional Drift Analysis: Optimizing Two Functions Simultaneously Can Be Hard Duri Janett and Johannes Lengler	612
Author Index	627

Contents – Part I

Automated Algorithm Selection and Configuration	
Automated Algorithm Selection in Single-Objective Continuous Optimization: A Comparative Study of Deep Learning and Landscape Analysis Methods	3
Raphael Patrick Prager, Moritz Vinzent Seiler, Heike Trautmann, and Pascal Kerschke	
Improving Nevergrad's Algorithm Selection Wizard NGOpt Through	
Automated Algorithm Configuration Risto Trajanov, Ana Nikolikj, Gjorgjina Cenikj, Fabien Teytaud, Mathurin Videau, Olivier Teytaud, Tome Eftimov, Manuel López-Ibáñez, and Carola Doerr	18
Non-elitist Selection Can Improve the Performance of Irace	32
Per-run Algorithm Selection with Warm-Starting Using Trajectory-Based	
Features Ana Kostovska, Anja Jankovic, Diederick Vermetten, Jacob de Nobel, Hao Wang, Tome Eftimov, and Carola Doerr	46
Bayesian- and Surrogate-Assisted Optimization	
A Systematic Approach to Analyze the Computational Cost of Robustness	
in Model-Assisted Robust Optimization Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard Sendhoff, and Thomas Bäck	63
Adaptive Function Value Warping for Surrogate Model Assisted	
Evolutionary Optimization Amir Abbasnejad and Dirk V. Arnold	76
Efficient Approximation of Expected Hypervolume Improvement Using	
Gauss-Hermite Quadrature Alma Rahat, Tinkle Chugh, Jonathan Fieldsend, Richard Allmendinger, and Kaisa Miettinen	90
Finding Knees in Bayesian Multi-objective Optimization	104

Geographic April 2	110
Component Analysis	118
Single Interaction Multi-Objective Bayesian Optimization	132
Surrogate-Assisted LSHADE Algorithm Utilizing Recursive Least	
Squares Filter Mateusz Zaborski and Jacek Mańdziuk	146
Towards Efficient Multiobjective Hyperparameter Optimization: A Multiobjective Multi-fidelity Bayesian Optimization and Hyperband	
Algorithm Zefeng Chen, Yuren Zhou, Zhengxin Huang, and Xiaoyun Xia	160
Benchmarking and Performance Measures	
A Continuous Optimisation Benchmark Suite from Neural Network	
Regression Katherine M. Malan and Christopher W. Cleghorn	177
BBE: Basin-Based Evaluation of Multimodal Multi-objective Optimization	
Problems Jonathan Heins, Jeroen Rook, Lennart Schäpermeier, Pascal Kerschke, Jakob Bossek, and Heike Trautmann	192
Evolutionary Approaches to Improving the Layouts of Instance-Spaces Kevin Sim and Emma Hart	207
Combinatorial Optimization	
A Novelty-Search Approach to Filling an Instance-Space with Diverse and Discriminatory Instances for the Knapsack Problem	223
Co-evolutionary Diversity Optimisation for the Traveling Thief Problem Adel Nikfarjam, Aneta Neumann, Jakob Bossek, and Frank Neumann	237
Computing High-Quality Solutions for the Patient Admission Scheduling	
Problem Using Evolutionary Diversity Optimisation	250

Cooperative Multi-agent Search on Endogenously-Changing Fitness Landscapes	265
Chin Woei Lim, Richard Allmendinger, Joshua Knowles, Ayesha Alhosani, and Mercedes Bleda	200
Evolutionary Algorithm for Vehicle Routing with Diversity Oscillation	
Mechanism Piotr Cybula, Andrzej Jaszkiewicz, Przemysław Pełka, Marek Rogalski, and Piotr Sielski	279
Evolutionary Algorithms for Limiting the Effect of Uncertainty for the Knapsack Problem with Stochastic Profits Aneta Neumann, Yue Xie, and Frank Neumann	294
Self-adaptation via Multi-objectivisation: An Empirical Study	308
The Combined Critical Node and Edge Detection Problem. An Evolutionary Approach	324
Tumus Repes, Froemi Gusno, una Gega Fenor	
(Evolutionary) Machine Learning and Neuroevolution	
	341
(Evolutionary) Machine Learning and Neuroevolution Attention-Based Genetic Algorithm for Adversarial Attack in Natural Language Processing	341
(Evolutionary) Machine Learning and Neuroevolution Attention-Based Genetic Algorithm for Adversarial Attack in Natural Language Processing	
(Evolutionary) Machine Learning and Neuroevolution Attention-Based Genetic Algorithm for Adversarial Attack in Natural Language Processing	356

Approximation	414
Multi-objective Evolutionary Ensemble Pruning Guided by Margin Distribution Yu-Chang Wu, Yi-Xiao He, Chao Qian, and Zhi-Hua Zhou	427
Revisiting Attention-Based Graph Neural Networks for Graph Classification Ye Tao, Ying Li, and Zhonghai Wu	442
Robust Neural Network Pruning by Cooperative Coevolution	459
SemiGraphFL: Semi-supervised Graph Federated Learning for Graph Classification	474
Evolvable Hardware and Evolutionary Robotics	
Evolutionary Design of Reduced Precision Preprocessor for Levodopa-Induced Dyskinesia Classifier	491
In-Materio Extreme Learning Machines Benedict. A. H. Jones, Noura Al Moubayed, Dagou A. Zeze, and Chris Groves	505
On the Impact of the Duration of Evaluation Episodes on the Evolution of Adaptive Robots Larissa Gremelmaier Rosa, Vitor Hugo Homem, Stefano Nolfi, and Jônata Tyska Carvalho	520
Fitness Landscape Modeling and Analysis	
Analysing the Fitness Landscape Rotation for Combinatorial Optimisation Joan Alza, Mark Bartlett, Josu Ceberio, and John McCall	533
Analysis of Search Landscape Samplers for Solver Performance Prediction on a University Timetabling Problem	548
Thomas Feutrier, Marie-Éléonore Kessaci, and Nadarajen Veerapen	348

Fractal Dimension and Perturbation Strength: A Local Optima Networks View	562
HPO × ELA: Investigating Hyperparameter Optimization Landscapes by Means of Exploratory Landscape Analysis Lennart Schneider, Lennart Schäpermeier, Raphael Patrick Prager, Bernd Bischl, Heike Trautmann, and Pascal Kerschke	575
Increasing the Diversity of Benchmark Function Sets Through Affine Recombination	590
Neural Architecture Search: A Visual Analysis Gabriela Ochoa and Nadarajen Veerapen	603
Author Index	617

Contents - Part I xxiii