Abstract
Many real-world multi-modal multi-objective optimization problems are subject to continuously changing environments, which requires the optimizer to track multiple equivalent Pareto sets in the decision space. To the best of our knowledge, this type of optimization problems has not been studied in the literature. To fill the research gap in this area, we provide a preliminary study on dynamic multi-modal multi-objective optimization. We give a formal definition of dynamic multi-modal multi-objective optimization problems and point out some key challenges in solving them. To facilitate algorithm development, we suggest a systematic approach to construct benchmark problems. Furthermore, we provide a feature-rich test suite containing 10 novel dynamic multi-modal multi-objective test problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The supplementary file can be found at https://github.com/Yiming-Peng-Official/dMMOP.
References
Azzouz, R., Bechikh, S., Said, L.B.: A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy. Soft Comput. 21(4), 885–906 (2015). https://doi.org/10.1007/s00500-015-1820-4
Cao, L., Xu, L., Goodman, E.D., Bao, C., Zhu, S.: Evolutionary dynamic multiobjective optimization assisted by a support vector regression predictor. IEEE Trans. Evol. Comput. 24(2), 305–309 (2020)
Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7_71
Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K., Rao N., U.B., Karthik, S.: Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_60
Deb, K., Tiwari, S.: Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization. Eur. J. Oper. Res. 185(3), 1062–1087 (2008)
Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans. Evol. Comput. 5(8), 425–442 (2004)
Goh, C., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2008)
Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International Conference on Genetic Algorithms and Their Application, pp. 41–49 (1987)
Greeff, M., Engelbrecht, A.P.: Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation. In: IEEE Congress on Evolutionary Computation, pp. 2917–2924 (2008)
Ishibuchi, H., Matsumoto, T., Masuyama, N., Nojima, Y.: Many-objective problems are not always difficult for Pareto dominance-based evolutionary algorithms. In: Proceedings of the 24th European Conference on Artificial Intelligence (2020)
Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment. IEEE Trans. Evol. Comput. 6(4), 402–412 (2002)
Jiang, S., Yang, S.: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 21(1), 65–82 (2016)
Li, Q., Zou, J., Yang, S., Zheng, J., Ruan, G.: A predictive strategy based on special points for evolutionary dynamic multi-objective optimization. Soft Comput. 23(11), 3723–3739 (2018). https://doi.org/10.1007/s00500-018-3033-0
Lin, Q., Lin, W., Zhu, Z., Gong, M., Li, J., Coello, C.A.C.: Multimodal multi-objective evolutionary optimization with dual clustering in decision and objective spaces. IEEE Trans. Evol. Comput. 25(1), 130–144 (2021)
Liu, Y., Ishibuchi, H., Nojima, Y., Masuyama, N., Shang, K.: A double-niched evolutionary algorithm and its behavior on polygon-based problems. In: Proceedings of the Parallel Problem Solving from Nature - PPSN XV, pp. 262–273 (2018)
Liu, Y., Yen, G.G., Gong, D.: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies. IEEE Trans. Evol. Comput. 23(4), 660–674 (2019)
Nguyen, T.T.: Continuous Dynamic Optimization Using Evolutionary Algorithms. Ph.D. thesis, The University of Birmingham (2010)
Peng, Y., Ishibuchi, H.: A decomposition-based multi-modal multi-objective optimization algorithm. In: Proceedings of the 2020 IEEE Congress on Evolutionary Computation, pp. 1–8 (2020)
Peng, Y., Ishibuchi, H., Shang, K.: Multi-modal multi-objective optimization: problem analysis and case studies. In: Proceedings of the IEEE Symposium Series on Computational Intelligence, pp. 1865–1872 (2019)
Petrowski, A.: A clearing procedure as a niching method for genetic algorithms. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 798–803 (1996)
Raquel, C., Yao, X.: Dynamic multi-objective optimization: a survey of the state-of-the-art. In: Evolutionary Computation for Dynamic Optimization Problems, pp. 85–106. Springer, Heidelberg(2013). https://doi.org/10.1007/978-3-642-38416-5_4
Schütze, O., Vasile, M., Coello, C.A.C.: Computing the set of epsilon-efficient solutions in multiobjective space mission design. J. Aerosp. Comput. Inf. Commun. 8(3), 53–70 (2011)
Shir, O.M.: Niching in evolutionary algorithms. In: Handbook of Natural Computing, pp. 1035–1069. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9_32
Tian, Y., Liu, R., Zhang, X., Ma, H., Tan, K.C., Jin, Y.: A multi-population evolutionary algorithm for solving large-scale multi-modal multi-objective optimization problems. IEEE Tran. Evol. Comput. 25(3), 405–418 (2020)
Yue, C., Qu, B., Liang, J.: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans. Evol. Comput. 22(5), 805–817 (2018)
Yue, C., Qu, B., Yu, K., Liang, J., Li, X.: A novel scalable test problem suite for multimodal multiobjective optimization. Swarm Evol. Comput. 48, 62–71 (2019)
Zhang, K., Chen, M., Xu, X., Yen, G.G.: Multi-objective evolution strategy for multi-modal multi-objective optimization. Appl. Soft Comput. 101, 107004 (2021)
Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans. Evol. Comput. 13(5), 1167–1189 (2009)
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant No. 61876075), Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Entrepre-neurial Teams (Grant No. 2017ZT07X386), The Stable Support Plan Program of Shenzhen Natural Science Fund (Grant No. 20200925174447003), Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Peng, Y., Ishibuchi, H. (2022). Dynamic Multi-modal Multi-objective Optimization: A Preliminary Study. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-14721-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14720-3
Online ISBN: 978-3-031-14721-0
eBook Packages: Computer ScienceComputer Science (R0)