Skip to main content

Greedy Decremental Quick Hypervolume Subset Selection Algorithms

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Abstract

The contribution of this paper is fourfold. First, we present an updated implementation of the Improved Quick Hypervolume algorithm which is several times faster than the original implementation and according to the presented computational experiment it is at least competitive to other state-of-the-art codes for hypervolume computation. Second, we present a Greedy Decremental Lazy Quick Hypervolume Subset Selection algorithm. Third, we propose a modified Quick Hypervolume Extreme Contributor/Contribution algorithm using bounds from previous iterations of a greedy hypervolume subset selection algorithm. According to our experiments these two methods perform the best for greedy decremental hypervolume subset selection. Finally, we systematically compare performance of the fastest algorithms for greedy incremental and decremental hypervolume subset selection using two criteria: CPU time and the quality of the selected subset.

This research was funded by the Polish Ministry of Education and Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All data sets used in this experiment, source code and the detailed results are available at https://chmura.put.poznan.pl/s/DxsmP72OS65Glce.

References

  1. Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using monte carlo sampling. In: Ehrgott, M., Naujoks, B., Stewart, T.J., Wallenius, J. (eds.) Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 313–326. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-04045-0_27

  2. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Google Scholar 

  3. Basseur, M., Derbel, B., Goëffon, A., Liefooghe, A.: Experiments on greedy and local search heuristics for dimensional hypervolume subset selection. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 541–548. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2908812.2908949

  4. Beume, N., Fonseca, C.M., Lopez-Ibanez, M., Paquete, L., Vahrenhold, J.: On the complexity of computing the hypervolume indicator. IEEE Trans. Evol. Comput. 13(5), 1075–1082 (2009)

    Google Scholar 

  5. Beume, N., Naujoks, B., Emmerich, M.: Sms-emoa: multiobjective selection based on dominated hypervolume. Euro. J. Operat. Res. 181, 1653–1669 (2007). https://doi.org/10.1016/j.ejor.2006.08.008

  6. Bradstreet, L., While, L., Barone, L.: Incrementally maximising hypervolume for selection in multi-objective evolutionary algorithms. In: 2007 IEEE Congress on Evolutionary Computation, pp. 3203–3210. IEEE (2007)

    Google Scholar 

  7. Bringmann, K., Cabello, S., Emmerich, M.T.M.: Maximum Volume Subset Selection for Anchored Boxes. In: Aronov, B., Katz, M.J. (eds.) 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 77, pp. 22:1–22:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2017)

    Google Scholar 

  8. Bringmann, K., Friedrich, T., Klitzke, P.: Generic postprocessing via subset selection for hypervolume and epsilon-indicator. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 518–527. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_51

  9. Brockhoff, D., Tran, T., Hansen, N.: Benchmarking numerical multiobjective optimizers revisited. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 639–646. GECCO 2015. Association for Computing Machinery, New York (2015)

    Google Scholar 

  10. Chan, T.M.: Klee’s measure problem made easy. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 410–419 (2013)

    Google Scholar 

  11. Chen, W., Ishibuchi, H., Shang, K.: Lazy greedy hypervolume subset selection from large candidate solution sets. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2020)

    Google Scholar 

  12. Cox, W., While, L.: Improving the iwfg algorithm for calculating incremental hypervolume. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3969–3976 (2016)

    Google Scholar 

  13. Friedrich, T., Neumann, F.: Maximizing submodular functions under matroid constraints by multi-objective evolutionary algorithms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 922–931. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_91

  14. Guerreiro, A.P., Fonseca, C.M.: Computing and updating hypervolume contributions in up to four dimensions. IEEE Trans. Evol. Comput. 22(3), 449–463 (2018)

    Google Scholar 

  15. Guerreiro, A.P., Fonseca, C.M., Paquete, L.: Greedy hypervolume subset selection in low dimensions. Evol. Comput. 24(3), 521–544 (2016)

    Google Scholar 

  16. Guerreiro, A.P., Fonseca, C.M., Paquete, L.: The hypervolume indicator: Problems and algorithms (2020)

    Google Scholar 

  17. Jaszkiewicz, A.: Improved quick hypervolume algorithm. Comput. Oper. Res. 90, 72–83 (2018)

    Google Scholar 

  18. Jaszkiewicz, A., Zielniewicz, P.: Quick Extreme Hypervolume Contribution Algorithm, pp. 412–420. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3449639.3459394

  19. Jiang, S., Zhang, J., Ong, Y., Zhang, A.N., Tan, P.S.: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 45(10), 2202–2213 (2015). https://doi.org/10.1109/TCYB.2014.2367526

  20. Knowles, J.D., Corne, D.W., Fleischer, M.: Bounded archiving using the lebesgue measure. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 4, pp. 2490–2497 (2003)

    Google Scholar 

  21. Lacour, R., Klamroth, K., Fonseca, C.M.: A box decomposition algorithm to compute the hypervolume indicator. Comput. Oper. Res. 79, 347–360 (2017)

    Google Scholar 

  22. Laitila, J., Moilanen, A.: New performance guarantees for the greedy maximization of submodular set functions. Optimization Letters 11(4), 655–665 (2016). https://doi.org/10.1007/s11590-016-1039-z

  23. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey. ACM Comput. Surv. 48(1), 1–35 (2015)

    Google Scholar 

  24. Li, M., Yao, X.: Quality evaluation of solution sets in multiobjective optimisation: a survey. ACM Comput. Surv. 52(2), 1–38 (2019)

    Google Scholar 

  25. Minoux, M.: Accelerated greedy algorithms for maximizing submodular set functions. In: Stoer, J. (ed.) Optimization Techniques, pp. 234–243. Springer, Berlin (1978). https://doi.org/10.1007/BFb0006528

  26. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Program. 14(1), 265–294 (1978)

    Google Scholar 

  27. Russo, L.M.S., Francisco, A.P.: Quick Hypervolume. IEEE Trans. Evol. Comput. 18(4), 481–502 (2014)

    Google Scholar 

  28. Russo, L.M.S., Francisco, A.P.: Extending quick hypervolume. J. Heuristics 22(3), 245–271 (2016). https://doi.org/10.1007/s10732-016-9309-6

  29. Seo, M.G., Shin, H.S.: Greedily excluding algorithm for submodular maximization. In: 2018 IEEE Conference on Control Technology and Applications (CCTA), pp. 1680–1685 (2018). https://doi.org/10.1109/CCTA.2018.8511628

  30. Shang, K., Ishibuchi, H., He, L., Pang, L.M.: A survey on the hypervolume indicator in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 25(1), 1–20 (2021)

    Google Scholar 

  31. Shang, K., Ishibuchi, H., Ni, X.: R2-based hypervolume contribution approximation. IEEE Trans. Evol. Comput. 24(1), 185–192 (2020)

    Google Scholar 

  32. Ulrich, T., Thiele, L.: Bounding the effectiveness of hypervolume-based (\(\upmu +\uplambda \))-archiving algorithms. In: Proceedings of the 6th International Conference on Learning and Intelligent Optimization, LION 2012, pp. 235–249. Springer, Berlin (2012)

    Google Scholar 

  33. While, L., Bradstreet, L.: Applying the wfg algorithm to calculate incremental hypervolumes. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)

    Google Scholar 

  34. While, L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Trans. Evol. Comput. 16(1), 86–95 (2012)

    Google Scholar 

  35. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

  36. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Google Scholar 

  37. Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE Trans. Evol. Comput. 14(1), 58–79 (2010)

    Google Scholar 

  38. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Zielniewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaszkiewicz, A., Zielniewicz, P. (2022). Greedy Decremental Quick Hypervolume Subset Selection Algorithms. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14721-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14720-3

  • Online ISBN: 978-3-031-14721-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics