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Abstract

It is known that step size adaptive evolution strategies (ES) do not converge (prematurely)
to regular points of continuously differentiable objective functions. Among critical points,
convergence to minima is desired, and convergence to maxima is easy to exclude. However,
surprisingly little is known on whether ES can get stuck at a saddle point. In this work we
establish that even the simple (1+1)-ES reliably overcomes most saddle points under quite
mild regularity conditions. Our analysis is based on drift with tail bounds. It is non-standard
in that we do not even aim to estimate hitting times based on drift. Rather, in our case it
suffices to show that the relevant time is finite with full probability.

1 Introduction

The question how optimization algorithms
handle saddle points is a classic subject. In
the standard analysis of gradient-based opti-
mization, it is easy to rule out premature con-
vergence to a regular point. In contrast, ex-
cluding convergence to saddle points requires
considerable effort [4].
In evolutionary computation, the situation is
no different. Akimoto et al. [3] established
that many optimizers cannot converge to a
regular point of the objective function under
the rather basic assumption that they success-
fully diverge on a linear slope.

Fig. 1 Graph of a difficult saddle point.

Prior work on the behavior of evolution strategies in the presence of a saddle point seems
to be sparse. We need to highlight that usually in optimization the goal is not to get stuck
at a saddle point, but rather to proceed to a (local) optimum. This is different from the goal
of locating saddle points by means of optimization techniques, in cases where these saddles are
of interest by themselves [1]. That line of work on “saddle point optimization”, also called
min-max-problems, is unrelated to our research question.
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In our own prior work [5], we conducted a detailed analysis of conditions under which con-
vergence of the (1+1)-ES to the global optimum can be guaranteed, on an extremely wide class
of functions. In that work, premature convergence to saddle points can only be excluded if the
success probability in the saddle point exceeds the target success rate of 1/5 in the limit of small
step sizes. On the other hand, for some extremely deceptive saddle points of sharp ridges, a
positive probability for premature convergence is proven.

There is a considerable gap between the two cases. While existing guarantees do not apply to
these cases, empirical evidence indicates—maybe surprisingly—that already the simple (1+1)-
ES reliably overcomes even extremely ill-conditioned saddle points. In the present paper we
close this gap by cementing the empirical evidence with a proof.

Algorithm 1: (1+1)-ES with 1/5-success rule

1: input m0 ∈ Rd, σ0 > 0, f : Rd → R, parameter α > 1
2: for t = 1, 2, . . . , until stopping criterion is met do
3: sample xt ∼ N (mt, σ

2
t I)

4: if f
(
xt
)
≤ f

(
mt

)
then

5: mt+1 ← xt . move to the better solution
6: σt+1 ← σt · α . increase the step size
7: else
8: mt+1 ← mt . stay where we are
9: σt+1 ← σt · α−1/4 . decrease the step size

We consider the (1+1)-ES as specified in Algorithm 1. This version of the method can be
attributed to Kern et al. [7]. It was used in the recent analysis [2]. For a given algorithm state
(m,σ), we define the success probability psucc(m,σ) = Pr

(
f(x) ≤ f(m)

)
. It plays a key role for

analyzing step size adaptation in the (1+1)-ES.

2 Saddle Points

In the following, we define various types of critical points of a continuously differentiable objective
function f : Rd → R. A point x∗ ∈ Rd is called critical if ∇f(x∗) = 0, and regular otherwise. A
critical point is a local minimum/maximum if there exists r > 0 such that it is minimal/maximal
within an open ball B(x∗, r). If x∗ is critical but neither (locally) minimal nor maximal, then it
is a saddle point.

If f is twice continuously differentiable then most critical points are well characterized by
their second order Taylor expansion

f(x) = f(x∗) + (x− x∗)TH(x− x∗) + o(‖x− x∗‖2) .

The eigenvalues of the Hessian H determine its type: if all eigenvalues are positive/negative
then it is a minimum/maximum. If both positive and negative eigenvalues exist then it is a
saddle point. Zero eigenvalues are not informative, since the behavior of the function in the
corresponding eigenspaces is governed by higher order terms.1

1It should be noted that a few interesting cases exist for zero eigenvalues (which should be improbable in
practice), like the “Monkey saddle” f(x) = x3

1 − 3x1x
2
2. We believe that this case can be analyzed with the same

techniques as developed below, but it is outside the scope of this paper.
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Figure 2: Level sets of different instances of fa for a = (−4, 1) (left), a = (−1, 1) (middle), and
a = (−1, 20) (right), centered onto the saddle point. The scale of the axes is irrelevant since the
problem is scale-invariant. The shaded areas correspond to positive function values. Problem
difficulty increases from left to right, since the probability of sampling a “white” point (negative
function value) in the vicinity of the saddle point shrinks.

Therefore, a prototypical problem exhibiting a saddle point is the family of objective func-
tions

fa(x) =
d∑
i=1

aix
2
i

with parameter a ∈ Rd. We assume that there exists b ∈ {1, . . . , d− 1} such that ai < 0 for all
i ≤ b and ai > 0 for all i > b. In all cases, the origin x∗ = 0 is a saddle point. The eigenvalues
of the Hessian are the parameters ai. Therefore, every saddle point of a twice continuously
differentiable function with non-zero eigen values of the Hessian is well approximated by an
instance of fa after applying translation and rotation operations, to which the (1+1)-ES is
invariant. This is why analyzing the (1+1)-ES on fa covers an extremely general case.

We observe that fa is scale invariant, see also Figure 2: fa(c ·x) = c2 ·fa(x) holds, and hence
fa(x) < fa(x

′) ⇔ fa(c · x) < f(c · x′) for all x, x′ ∈ Rd and c > 0. This means that level sets
look the same on all scales, i.e., they are scaled versions of each other. Also, the f -ranking of
two points x, x′ ∈ Rd agrees with the ranking of the c · x versus c · x′.

Related to the structure of fa we define the following notation. For x ∈ Rd we define x−, x+ ∈
Rd as the projections of x onto the first b components and onto the last d − b components,
respectively. To be precise, we have (x−)i = xi for i ∈ {1, . . . , b} and (x+)i = xi for i ∈
{b+1, . . . , d}, while the remaining components of both vectors are zero. We obtain x = x−+x+.

For the two-dimensional case, three instances are plotted in Figure 2. The parameter a
controls the difficulty of the problem. The success probability of the (1+1)-ES at the saddle
point m = 0 equals psucc(0, σ) = cot−1(

√
|a2/a1|), which decays to zero for |a2| � |a1|. This

is a potentially fatal problem for the (1+1)-ES, since it may keep shrinking its step size and
converge prematurely [5].

The contribution of this paper is to prove that we do not need to worry about this problem.
More technically precise, we aim to establish the following theorem:
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Theorem 1. Consider the sequence of states (mt, σt)t∈N of the (1+1)-ES on the function fa.
Then, with full probability, there exists T ∈ N such that for all t ≥ T it holds fa(mt) < 0.

It ensures that the (1+1)-ES surpasses the saddle point with full probability in finite time
(iteration T ). This implies in particular that the saddle point is not a limit point of the sequence
(mt)t∈N (see also Lemma 1 below).

3 Preliminaries

In this section, we prepare definitions and establish auxiliary results. We start by defining the
following sets: D−a = f−1

a (R<0), D0
a = f−1

a ({0}), and D+
a = f−1

a (R>0). They form a partition of
the search space Rd.

For a vector x ∈ Rd we define the semi-norms

‖x‖− =

√√√√− b∑
i=1

aix2
i and ‖x‖+ =

√√√√ d∑
i=b+1

aix2
i .

The two semi-norms are Mahalanobis norms in the subspaces spanned by eigenvectors with
negative and positive eigenvalues of the Hessian of fa, respectively, when interpreting the Hessian
with negative eigenvalues flipped to positive as an inverse covariance matrix. In other words,
fa(x) = ‖x‖2+ − ‖x‖2− holds. Furthermore, we have ‖x+‖+ = ‖x‖+, ‖x−‖− = ‖x‖−, ‖x−‖+ = 0,
and ‖x+‖− = 0.

In the following, we exploit scale invariance of fa by analyzing the stochastic process (mt, σt)
in a normalized state space. We map a state to the corresponding normalized state by

(m,σ) 7→
(

m

‖m‖+
,

σ

‖m‖+

)
= (m̃, σ̃) .

This normalization is different from the normalizations m/σ and m/(dσ), which give rise to a
scale-invariant process when minimizing the Sphere function [2]. The different normalization
reflects the quite different dynamics of the (1+1)-ES on fa.

We are particularly interested in the case m ∈ D+
a , since we need to exclude the case that

the (1+1)-ES stays in that set indefinitely. Due to scale invariance, this condition is equivalent
to m̃ ∈ D+

a . We define the set

M =
{
x ∈ Rd

∣∣ ‖x‖+ = 1
}
.

The state space for the normalized states (m̃, σ̃) takes the form M × R>0. We also define the
subset M+

0 = M ∩ (D+
a ∪ D0

a). The reason to include the zero level set is that closing the set
makes it compact. Its boundedness can be seen from the reformulation M+

0 =
{
m ∈ Rd

∣∣ ‖m‖+ =
1 and ‖m‖− ≤ 1

}
. In the following, compactness will turn out to be very useful, exploiting the

fact that on a compact set, every lower semi-continuous function attains its infimum.
The success probability psucc(m,σ) is scale invariant, and hence it is well-defined as a function

of the normalized state (m̃, σ̃). It is everywhere positive. Indeed, it is uniformly lower bounded
by pmin = min(p∗, 1

2) > 0, where p∗ = psucc(0, 1) denotes the success probability in the saddle
point (which is independent of the step size, and depends only on a). The following two lemmas
deal with the success rate in more detail.
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Lemma 1. If there exists T ∈ N such that mT ∈ D0
a∪D−a then with full probability, the saddle

point 0 ∈ Rd of fa is not a limit point of the sequence (mt)t∈N.

Proof Due to elitism, the sequence mt can jump from D+
a to D0

a and then to D−a , but not the
other way round. In case of mT ∈ D−a all function values for t > T are uniformly bounded away
from zero by f(mt) ≤ f(mT ) < 0. Therefore f(mt) cannot converge to zero, and mt cannot
converge to the saddle point.

Now consider the case mT ∈ D0
a. For all m ∈ D0

a and all σ > 0, the probability of sampling
an offspring in D−a is positive, and it is lower bounded by pmin, which is positive and independent
of σ. Not sampling an offspring mt ∈ D−a for n iterations in a row has a probability of at most
(1 − pmin)n, which decays to zero exponentially quickly. Therefore, with full probability, we
obtain mt ∈ D−a eventually.

However, pmin being positive is not necessarily enough for the (1+1)-ES to escape the saddle
point, since for pmin < 1/5 it may stay inside of D+

a , keep shrinking its step size, and converge
prematurely [5]. In fact, based on the choice of the parameter a of fa, pmin can be arbitrar-
ily small. In the following lemma, we therefore prepare a drift argument, ensuring that the
normalized step size remains in or at least always returns to a not too small value.

Lemma 2. There exists a constant 0 < σ̃40% ≤ ∞ such that psucc(m̃, σ̃) ≥ 2/5 holds for all
states fulfilling m̃ ∈M+

0 and σ̃ ≤ σ̃40%.

Proof It follows immediately from the geometry of the level sets (see also Figure 2) that for
each fixed m̃ ∈M+

0 (actually for m 6= 0), it holds

lim
σ̃→0

psucc(m̃, σ̃) =
1

2
and lim

σ̃→∞
psucc(m̃, σ̃) = p∗ .

Noting that psucc(m̃, σ̃) is continuous between these extremes, we define a pointwise critical step
size as

σ̃40%(m̃) = arg min
σ̃>0

{
psucc(m̃, σ̃) ≤ 2/5

}
.

With the convention that arg min over an empty set is ∞, this definition makes σ̃40% : M+
0 →

R ∪ {∞} a lower semi-continuous function. Due to compactness of M+
0 it attains its minimum

σ̃40% > 0.

4 Drift of the Normalized State

In this section we establish two drift arguments. They apply to the following drift potential
functions:

V (m̃, σ̃) = log(σ̃)

W (m̃, σ̃) = ‖m̃‖−
Φ(m̃, σ̃) = β · V (m̃, σ̃) +W (m̃, σ̃)

The potentials govern the dynamics of the step size σ̃, of the mean m̃, and of the combined
process, namely the (1+1)-ES. The trade-off parameter β > 0 will be determined later. Where
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necessary we extend the definitions to the original state by plugging in the normalization, e.g.,
resulting in W (m,σ) = ‖m‖−

‖m‖+ .

For a normalized state (m̃, σ̃) let (m̃′, σ̃′) denote the normalized successor state. We measure
the drift of all three potentials as follows:

∆V (m̃, σ̃) = E
[
V (σ̃′)− V (σ̃)

]
∆W (m̃, σ̃) = E

[
min{W (m̃′)−W (m̃), 1}

]
∆Φ(m̃, σ̃) = β ·∆V (m̃, σ̃) + ∆W (m̃, σ̃)

As soon as W (m̃) > 1, m̃ ∈ D−a holds and the (1+1)-ES has successfully passed the saddle
point according to Lemma 1. Therefore we aim to show that the sequence W (m̃t) keeps growing,
and that is passes the threshold of one. To this end, we will lower bound the progress ∆W of
the truncated process.

Truncation of particularly large progress in the definition of ∆W , i.e., W -progress larger
than one, serves the purely technical purpose of making drift theorems applicable. This sounds
somewhat ironic, since a progress of more than one on W immediately jumps into the set D−a and
hence passes the saddle. On the technical side, an upper bound on single steps is a convenient
prerequisite. Its role is to avoid that the expected progress is achieved by very few large steps
while most steps make no or very litte progress, which would make it impossible to bound the
runtime based on expected progress. Less strict conditions allowing for rare large steps are
possible [6, 8]. The technique of bounding the single-step progress instead of the domain of the
stochastic process was introduced in [2].

The speed of the growth of W turns out to depend on σ̃. In order to guarantee growth at
a sufficient pace, we need to keep the normalized step size from decaying to zero too quickly.
Indeed, we will show that the normalized step size drifts away from zero by analyzing the
step-size progress ∆V .

The following two lemmas establish the drift of mean m̃ and step size σ̃.

Lemma 3. Assume m̃ ∈ M+
0 . There exists a constant B1 such that ∆V (m̃, σ̃) ≥ B1 holds.

Furthermore, there exist constants B2 > 0 and σ̃∗ ∈ (0, σ̃40%] such that for all σ̃ ≤ σ̃∗ it holds
∆V (m̃, σ̃) ≥ B2.

Lemma 4. Assume m̃ ∈ M+
0 . The W -progress ∆W (m̃, σ̃) is everywhere positive. Further-

more, for each σ̃∗ ∈ (0, σ̃40%] there exists a constant C > 0 depending on σ̃∗ such that it holds
∆W (m̃, σ̃) ≥ C if σ̃ ≥ σ̃∗.

The proofs of these lemmas contain the main technical work.

of Lemma 3 From the definition of σ̃40%, for σ̃ ≤ σ̃40%, we conclude that the probability of
sampling a successful offspring is at least 2/5. In case of an unsuccessful offspring, σ̃ shrinks by

the factor α−1/4. For a successful offspring it is multiplied by α · ‖m‖+‖m′‖+ , where the factor α > 1
comes from step size adaptation, and the fraction is due to the definition of the normalized state.

The dependency on m and m′ is inconvenient. However, for small step size σ̃ we have
‖m′‖ ≈ ‖m‖, simply because modifying m with a small step results in a similar offspring, which
is then accepted as the new mean m′. In the limit we have

lim
σ̃→0

E
[
log

(
‖m‖+
‖m′‖+

)]
= 0 .

6



This allows us to apply the same technique as in the proof of Lemma 2. The function (m̃, σ̃) 7→
E
[
log
(
‖m‖+
‖m′‖+

)]
is continuous. We define a pointwise lower bound through the lower semi-

continuous function

m̃ 7→ arg min
0<σ̃≤σ̃40%

{
E
[
log

(
‖m‖+
‖m′‖+

)]
≤ 1√

α

}
,

where the arg min over the empty set shall take the value σ40%. We define σ̃∗ as its infimum. It
is attained, since M+

0 is compact, and hence positive.
For σ̃ ≤ σ̃∗ we obtain the following drift condition:

∆V (m̃, σ̃) ≥ 2

5
·
[
log(α−

1
2 ) + log(α)

]
−
(

1− 2

5

)
· 1

4
· log(α)

=
1

5
· log(α)− 3

20
· log(α) =

1

20
· log(α) > 0

For σ̃ > σ̃∗ we consider the worst case of a success rate of zero. Then we obtain

∆V (m̃, σ̃) ≥ −1

4
· log(α) .

Hence, the statement holds with B1 = −1
4 · log(α) and B2 = 1

20 · log(α).

of Lemma 4 We start by showing that ∆W is always positive. We decompose the domain of
the sampling distribution (which is all of Rd) into spheres of fixed radius r = ‖m̃′ − m̃‖ and
show that the property holds, conditioned to the success region within each sphere. Within each
sphere, the distribution is uniform.

Each sphere makes positive and negative contributions to W (x) −W (m̃) = ‖x‖−
‖x‖+ − ‖m̃‖−.

Within the set

Z =

{
z ∈ Rd

∣∣∣∣ ‖z‖−‖z‖+
< ‖m̃‖−

}
the contributions are negative. The set is illustrated in Figure 3. Outside of Z, contributions are
positive. We aim to show that overall, for each sphere, the expectation is positive. To this end,
we define pairs of corresponding points such that the negative contribution of one point is (more
than) compensated by the positive contribution of the other. For our argument, it is important
that the Lebesgue measure of each subset S ⊂ Z is at most as large the Lebesgue measure of
the set of corresponding points outside of Z. This property will be fulfilled by construction, and
with equality.

For each successful offspring in Z we define a corresponding point outside of Z on the same
sphere. Corresponding points are mirrored at the symmetry axis through m. More precisely,
for z ∈ Z we define z′− = 2m− − z− and z′+ = z+. It holds m̃− − z− = z′− − m̃−, and we call
this difference δ = m̃− − z−.

By projecting both points onto the normalized state space M we obtain their contribu-
tions to the expectation. This amounts to following the dashed lines in Figure 3. Adding the
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mM

M

Z

Z

Figure 3: Geometric illustration of the proof of Lemma 4. The figure shows the saddle point
(center), level sets of fa (thin lines), the point m, and the set M (two horizontal lines), the thick
part of which is M+

0 . The area D−a has a white background, while D+
a is the gray area. The

dark gray area is the set Z.

The figure displays spheres of different radii into which the sampling distribution is decomposed.
The spheres are drawn as dotted circles, and as bold solid arcs in the region of successful
offspring, outperforming m. The thickened arcs indicate sets of corresponding points. Ten pairs
of corresponding points are shown, five each for two different spheres.
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contributions of z and z′ yields

W (z) +W (z′)− 2W (m̃) =
‖z‖−
‖z‖+

+
‖z′‖−
‖z′‖+

− 2‖m̃‖−

=
‖m̃− δ‖− + ‖m̃+ δ‖−

‖z‖+
− 2‖m̃‖−

≥ ‖m̃− δ‖− + ‖m̃+ δ‖− − 2‖m̃‖− ≥ 0 .

The first inequality holds because of ‖z‖+ = ‖z′‖+ ≤ 1 (note that the set M corresponds to
‖ · ‖+ = 1, see also Figure 3). The second step is the triangle inequality of the semi-norm ‖ · ‖−.
Both inequalities are strict outside of a set of measure zero.

Truncating progress W (z′)−W (m̃) larger than one does not pose a problem. This is because
W (m̃)−W (z) < 1 is obtained from the fact that m̃ and z are both contained in D+

a , and this
is where W takes values in the range [0, 1). We obtain W (z)−W (m̃) + 1 > 0 in the truncated
case.

Integrating the sum over all corresponding pairs on the sphere, and noting that there are
successful points outside of Z which do not have a successful corresponding point inside but not
the other way round, we see that the expectation of W (m̃′)−W (m̃) over the success region of
each sphere is positive.

Integration over all radii r > 0 completes the construction. In the integration, the weights
of different values of r depend on σ̃ (by means of the pdf of a χ-distribution scaled by σ̃). Since
the integrand is non-negative, we conclude that ∆W (m̃, σ̃) > 0 holds for all σ̃ > 0.

In the limit σ̃ →∞, the expected progress in case of success converges to one (due to trun-
cation), and hence the expected progress converges to p∗. This allows us to exploit compactness
once more. The expectation of the truncated progress ∆W (m̃, σ̃) is continuous as a function of
the normalized state. We define a pointwise lower bound as

C(m̃) = min
σ̃≥σ̃40%

{
∆W (m̃, σ̃)

}
.

C(m̃) is a continuous function, and (under slight misuse of notation) we define C as its infimum
over the compact set M+

0 . Since the infimum is attained, it is positive.

Now we are in the position to prove the theorem.

of Theorem 1 Combining the statements of Lemma 3 and 4 we obtain

∆Φ(m̃, σ̃) ≥ θ := min{βB2, C + βB1}

for all m̃ ∈M+
0 and σ̃ > 0. The choice β = −C

2B1
results in θ = min{B2, C/2} > 0. The constant

θ is a bound on the additive drift of Φ, hence we can apply additive drift with tail bound (e.g.,
Theorem 2 in [8] with additive drift as a special case, or alternatively inequality (2.9) in Theorem
2.3 in [6]) to obtain the following: Let

T = min
{
t ∈ N

∣∣∣Φ(m̃t, σ̃t) > 1
}

denote the waiting time for the event that Φ reaches or exceeds one (called the first hitting
time). Then the probability of T exceeding T0 ∈ N decays exponentially in T0. Therefore, with
full probability, the hitting time T is finite. Φ(m̃T , σ̃T ) > 1 is equivalent to f(mT ) < 0. For all
t > T , the function value stays negative, due to elitism.
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5 Discussion and Conclusion

We have established that the (1+1)-ES does not get stuck at a (quadratic) saddle point, irre-
spective of its conditioning (spectrum of its Hessian), with full probability. This is all but a
trivial result since the algorithm is suspectable to premature convergence if the success rate is
smaller than 1/5. For badly conditioned problems, close to the saddle point, the success rate can
indeed be arbitrarily low. Yet, the algorithm passes the saddle point by avoiding it “sideways”:
While approaching the level set containing the saddle point, there is a systematic sidewards
drift away from the saddle. This keeps the step size from decaying to zero, and the saddle is
circumvented.

In this work we are only concerned with quadratic functions. Realistic objective functions to
be tackled by evolution strategies are hardly ever so simple. Yet, we believe that our analysis is
of quite general value. The reason is that the negative case, namely premature convergence to a
saddle point, is an inherently local process, which is dominated by a local approximation like the
second order Taylor polynomial around the saddle point. Our analysis makes clear that as long
as the saddle is well described by a second order Taylor approximation with a full-rank Hessian
matrix, then the (1+1)-ES will not converge prematurely to the saddle point. We believe that
our result covers the most common types of saddle points. Notable exceptions are sharp ridges,
plateaus, and Monkey saddles.

The main limitation of this work is not the covered class of functions, but the covered
algorithms. The analysis sticks closely to the (1+1)-ES with its success-bases step size adaptation
mechanism. There is no reason to believe that a fully fledged algorithm like the covariance matrix
adaptation evolution strategy (CMA-ES) [?] would face more problems with a saddle than the
simple (1+1)-ES, and to the best of our knowledge, there is no empirical indication thereof.
In fact, our intuition is that most algorithms should profit from the sidewards drift, as long as
they manage to break the symmetry of the problem, e.g., through randomized sampling. Yet, it
should be noted that our analysis does not easily extend to non-elitist algorithms and step size
adaptation methods other than success-based rules.
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[7] S. Kern, S. D. Müller, N. Hansen, D. Büche, J. Ocenasek, and P. Koumoutsakos. Learning proba-
bility distributions in continuous evolutionary algorithms–a comparative review. Natural Computing,
3(1):77–112, 2004.

[8] Per Kristian Lehre and Carsten Witt. General drift analysis with tail bounds. Technical Report
1307.2559, arXiv.org, 2013.

11


	1 Introduction
	2 Saddle Points
	3 Preliminaries
	4 Drift of the Normalized State
	5 Discussion and Conclusion

