Skip to main content

Evolutionary Algorithms for Cardinality-Constrained Ising Models

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Abstract

The Ising model is a famous model of ferromagnetism, in which atoms can have one of two spins and atoms that are neighboured prefer to have the same spin. Ising models have been studied in evolutionary computation due to their inherent symmetry that poses a challenge for evolutionary algorithms.

Here we study the performance of evolutionary algorithms on a variant of the Ising model in which the number of atoms with a specific spin is fixed. These cardinality constraints are motivated by problems in materials science in which the Ising model represents chemical species of the atom and the frequency of spins is constrained by the chemical composition of the alloy being modelled. Under cardinality constraints, mutating spins independently becomes infeasible, thus we design and analyse different mutation operators of increasing complexity that swap different atoms to maintain feasibility. We prove that randomised local search with a naive swap operator finds an optimal configuration in \(\varTheta (n^4)\) expected worst case time. This time is drastically reduced by using more sophisticated operators such as identifying and swapping clusters of atoms with the same spin. We show that the most effective operator only requires O(n) iterations to find an optimal configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6), 929–939 (2006)

    Article  MathSciNet  Google Scholar 

  2. Barahona, F.: On the computational complexity of Ising spin glass models. J. Phys. A Math. Gen. 15(10), 3241–3253 (1982)

    Article  MathSciNet  Google Scholar 

  3. Bian, C., Feng, C., Qian, C., Yu, Y.: An efficient evolutionary algorithm for subset selection with general cost constraints. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, pp. 3267–3274. AAAI Press (2020)

    Google Scholar 

  4. Bian, C., Qian, C., Neumann, F., Yu, Y.: Fast pareto optimization for subset selection with dynamic cost constraints. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, pp. 2191–2197 (2021)

    Google Scholar 

  5. Bossek, J., Neumann, F., Peng, P., Sudholt, D.: More effective randomized search heuristics for graph coloring through dynamic optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2020), pp. 1277–1285. ACM (2020)

    Google Scholar 

  6. Bossek, J., Neumann, F., Peng, P., Sudholt, D.: Time complexity analysis of randomized search heuristics for the dynamic graph coloring problem. Algorithmica 83(10), 3148–3179 (2021)

    Article  MathSciNet  Google Scholar 

  7. Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking discrete optimization heuristics with IOH profiler. Appl. Soft Comput. 88, 106027 (2020)

    Article  Google Scholar 

  8. Fischer, S.: A polynomial upper bound for a mutation-based algorithm on the two-dimensional ising model. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 1100–1112. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24854-5_108

    Chapter  Google Scholar 

  9. Fischer, S., Wegener, I.: The one-dimensional Ising model: mutation versus recombination. Theoret. Comput. Sci. 344(2–3), 208–225 (2005)

    Article  MathSciNet  Google Scholar 

  10. Friedrich, T., Göbel, A., Neumann, F., Quinzan, F., Rothenberger, R.: Greedy maximization of functions with bounded curvature under partition matroid constraints. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 2272–2279. AAAI Press (2019)

    Google Scholar 

  11. Friedrich, T., Kötzing, T., Lagodzinski, J.A.G., Neumann, F., Schirneck, M.: Analysis of the (1+1) EA on subclasses of linear functions under uniform and linear constraints. Theoret. Comput. Sci. 832, 3–19 (2020)

    Article  MathSciNet  Google Scholar 

  12. Goldberg, D.E., Van Hoyweghen, C., Naudts, B.: From TwoMax to the Ising model: easy and hard symmetrical problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 626–633. Morgan Kaufmann (2002)

    Google Scholar 

  13. Ikeda, Y., Grabowski, B., Körmann, F.: Ab initio phase stabilities and mechanical properties of multicomponent alloys: a comprehensive review for high entropy alloys and compositionally complex alloys. Mater. Charact. 147, 464–511 (2019)

    Article  Google Scholar 

  14. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31(1), 253–258 (1925)

    Article  Google Scholar 

  15. Janssen, J., et al.: pyiron: an integrated development environment for computational materials science. Comput. Mater. Sci. 163, 24–36 (2019)

    Article  Google Scholar 

  16. Jin, Y., Xiong, B., He, K., Hao, J.-K., Li, C.-M., Fu, Z.-H.: Clustering driven iterated hybrid search for vertex bisection minimization. IEEE Trans. Comput. (2021, Early Access)

    Google Scholar 

  17. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J. ACM 43(4), 601–640 (1996)

    Article  MathSciNet  Google Scholar 

  18. Laks, D.B., Ferreira, L., Froyen, S., Zunger, A.: Efficient cluster expansion for substitutional systems. Phys. Rev. B 46(19), 12587 (1992)

    Article  Google Scholar 

  19. Nallaperuma, S., Neumann, F., Sudholt, D.: Expected fitness gains of randomized search heuristics for the traveling salesperson problem. Evol. Comput. 25, 673–705 (2017)

    Article  Google Scholar 

  20. Neumann, F.: Expected runtimes of evolutionary algorithms for the Eulerian cycle problem. Comput. Oper. Res. 35(9), 2750–2759 (2008). ISSN 0305–0548

    Google Scholar 

  21. Qian, C., Zhang, Y., Tang, K., Yao, X.: On multiset selection with size constraints. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018), pp. 1395–1402. AAAI Press (2018)

    Google Scholar 

  22. Roostapour, V., Neumann, A., Neumann, F., Friedrich, T.: Pareto optimization for subset selection with dynamic cost constraints. Artif. Intell. 302, 103597 (2022)

    Article  MathSciNet  Google Scholar 

  23. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms on sorting and shortest paths problems. J. Math. Model. Algorithms 3(4), 349–366 (2004)

    Article  MathSciNet  Google Scholar 

  24. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 1161–1167. ACM Press (2005)

    Google Scholar 

  25. Theile, M.: Exact solutions to the traveling salesperson problem by a population-based evolutionary algorithm. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009. LNCS, vol. 5482, pp. 145–155. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01009-5_13

    Chapter  Google Scholar 

  26. Wu, Y., et al.: Short-range ordering and its effects on mechanical properties of high-entropy alloys. J. Mater. Sci. Technol. 62, 214–220 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Cuong Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhuva, V.D., Dang, DC., Huber, L., Sudholt, D. (2022). Evolutionary Algorithms for Cardinality-Constrained Ising Models. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14721-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14720-3

  • Online ISBN: 978-3-031-14721-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics