Skip to main content

Towards Fixed-Target Black-Box Complexity Analysis

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVII (PPSN 2022)

Abstract

Recently, fine-grained measures of performance of randomized search heuristics received attention in the theoretical community. In particular, some results were proven specifically for fixed-target runtime analysis. However, this research domain still lacks an important counterpart, namely, the (black-box) complexity analysis, which shall augment runtime analyses of particular algorithms with the bounds on what can be achieved with the best possible algorithms.

This paper makes few first steps in this direction. We prove upper and lower bounds on the fixed-target black-box complexity of the standard benchmark function OneMax given the problem size n and the target fitness k that we want to achieve. On the way to these bounds, we prove a general lower bound theorem suitable to derive bounds not only in fixed-target settings, but also in settings where a problem instance may have multiple optima.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshani, P., Agrawal, M., Doerr, B., Doerr, C., Larsen, K.G., Mehlhorn, K.: The query complexity of a permutation-based variant of Mastermind. Discret. Appl. Math. 260, 28–50 (2019)

    Article  MathSciNet  Google Scholar 

  2. Anil, G., Wiegand, R.P.: Black-box search by elimination of fitness functions. In: Proceedings of Foundations of Genetic Algorithms, pp. 67–78 (2009)

    Google Scholar 

  3. Ash, R.B.: Information Theory. Dover Publications (1990)

    Google Scholar 

  4. Buzdalov, M., Doerr, B., Doerr, C., Vinokurov, D.: Fixed-target runtime analysis. Algorithmica 84(6), 1762–1793 (2022)

    Article  MathSciNet  Google Scholar 

  5. Buzdalov, M., Doerr, B., Kever, M.: The unrestricted black-box complexity of jump functions. Evol. Comput. 24(4), 719–744 (2016)

    Article  Google Scholar 

  6. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theoret. Comput. Sci. 567, 87–104 (2015)

    Article  MathSciNet  Google Scholar 

  7. Doerr, B., Jansen, T., Witt, C., Zarges, C.: A method to derive fixed budget results from expected optimisation times. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 1581–1588 (2013)

    Google Scholar 

  8. Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster black-box algorithms through higher arity operators. In: Proceedings of Foundations of Genetic Algorithms, pp. 163–172 (2011)

    Google Scholar 

  9. Doerr, C., Lengler, J.: The (1+1) elitist black-box complexity of LeadingOnes. Algorithmica 80(5), 1579–1603 (2018)

    Article  MathSciNet  Google Scholar 

  10. Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking discrete optimization heuristics with IOHprofiler. Appl. Soft Comput. 88, 106027 (2020)

    Article  Google Scholar 

  11. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-box optimization. Theor. Comput. Syst. 39(4), 525–544 (2006)

    Article  MathSciNet  Google Scholar 

  12. Erdős, P., Rényi, A.: On two problems of information theory. Magyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei 8, 229–243 (1963)

    Google Scholar 

  13. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tusar, T., Brockhoff, D.: COCO: a platform for comparing continuous optimizers in a black-box setting. Optim. Meth. Softw. 36(1), 114–144 (2021)

    Article  MathSciNet  Google Scholar 

  14. He, J., Jansen, T., Zarges, C.: Unlimited budget analysis. In: Proceedings of Genetic and Evolutionary Computation Conference Companion, pp. 427–428 (2019)

    Google Scholar 

  15. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms–a proof that crossover really can help. Algorithmica 34, 47–66 (2002)

    Article  MathSciNet  Google Scholar 

  16. Jansen, T., Zarges, C.: Performance analysis of randomised search heuristics operating with a fixed budget. Theoret. Comput. Sci. 545, 39–58 (2014)

    Article  MathSciNet  Google Scholar 

  17. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64, 623–642 (2012)

    Article  MathSciNet  Google Scholar 

  18. Lengler, J., Spooner, N.: Fixed budget performance of the (1+1) EA on linear functions. In: Foundations of Genetic Algorithms XIII, pp. 52–61 (2015)

    Google Scholar 

  19. Rowe, J., Vose, M.: Unbiased black box search algorithms. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 2035–2042 (2011)

    Google Scholar 

  20. Rowe, J.E.: Linear multi-objective drift analysis. Theoret. Comput. Sci. 736, 25–40 (2018)

    Article  MathSciNet  Google Scholar 

  21. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity. In: 18th Annual Symposium on Foundations of Computer Science, pp. 222–227 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Buzdalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vinokurov, D., Buzdalov, M. (2022). Towards Fixed-Target Black-Box Complexity Analysis. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tušar, T. (eds) Parallel Problem Solving from Nature – PPSN XVII. PPSN 2022. Lecture Notes in Computer Science, vol 13399. Springer, Cham. https://doi.org/10.1007/978-3-031-14721-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14721-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14720-3

  • Online ISBN: 978-3-031-14721-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics