Abstract
Generalizations of the intermediate value theorem in several variables are presented. These theorems are very useful in various approaches including the existence of solutions of systems of nonlinear equations, the existence of fixed points of continuous functions as well as the existence of periodic orbits of nonlinear mappings and similarly, fixed points of the Poincaré map on a surface of section. Based on the corresponding criteria for the existence of a solution or a fixed point emanated by the intermediate value theorems, generalized bisection methods for approximating zeros or fixed points of continuous functions are given. These bisection methods require only the algebraic signs of the function values and are of major importance for studying and tackling problems with imprecise information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alefeld, G., Frommer, A., Heindl, G., Mayer, J.: On the existence theorems of Kantorovich, Miranda and Borsuk. Electron. Trans. Numer. Anal. 17, 102–111 (2004)
Bánhelyi, B., Csendes, T., Hatvan, L.: On the existence and stabilization of an upper unstable limit cycle of the damped forced pendulum. J. Comput. Appl. Math. 371, 112702 (2020)
Bolzano, B.: Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwei Werten, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege. Prague (1817)
Brönnimann, H., Emiris, I.Z., Pan, V., Pion, S.: Sign determination in residue number systems. Theor. Comput. Sci. 210, 173–197 (1999)
Brouwer, L.E.J.: Über Abbildungen von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1912)
Cauchy, A.-L.: Cours d’Analyse de l’École Royale Polytechnique, Paris (1821). (Reprinted in Oeuvres Completes, Series 2, vol. 3)
Drossos, L., Ragos, O., Vrahatis, M.N., Bountis, T.C.: Method for computing long periodic orbits of dynamical systems. Phys. Rev. E 53(1), 1206–1211 (1996)
Emiris I.Z., Mourrain B., Vrahatis M.N.: Sign methods for counting and computing real roots of algebraic systems. RR-3669, Inria (1999). inria-00073003
Emiris I.Z., Mourrain B., Vrahatis M.N.: Sign methods for enumerating solutions of nonlinear algebraic systems. In: Proceedings of the Fifth Hellenic European Conference on Computer Mathematics and Its Applications, vol. 2, pp. 469–473, Athens, Greece (2002)
Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990). https://doi.org/10.1007/978-1-4612-0983-6
Heindl, G.: Generalizations of theorems of Rohn and Vrahatis. Reliable Comput. 21, 109–116 (2016)
Jarník, V.: Bernard Bolzano and the foundations of mathematical analysis. In: Bolzano and the Foundations of Mathematical Analysis, pp. 33–42. Society of Czechoslovak Mathematicians and Physicists, Prague (1981)
Kearfott, R.B.: A proof of convergence and an error bound for the method of bisection in \(\mathbb{R} ^n\). Math. Comp. 32(144), 1147–1153 (1978)
Kearfott, R.B.: An efficient degree-computation method for a generalized method of bisection. Numer. Math. 32, 109–127 (1979). https://doi.org/10.1007/BF01404868
Knaster, B., Kuratowski, K., Mazurkiewicz, S.: Ein Beweis des Fixpunkt-satzes für \(n\)-dimensionale Simplexe. Fund. Math. 14, 132–137 (1929)
Milgrom, P., Mollner, J.: Equilibrium selection in auctions and high stakes games. Econometrica 86(1), 219–261 (2018)
Miranda, C.: Un’ osservatione su un theorema di Brouwer. Bollettino dell’U.M.I. 3, 5–7 (1940)
Mourrain, B., Vrahatis, M.N., Yakoubsohn, J.C.: On the complexity of isolating real roots and computing with certainty the topological degree. J. Complex. 18(2), 612–640 (2002)
Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Classics in Applied Mathematics vol. 30. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2000)
Poincaré, H.: Sur certaines solutions particulières du problème des trois corps. Comptes rendus de l’Académie des Sciences Paris 91, 251–252 (1883)
Poincaré, H.: Sur certaines solutions particulières du problème des trois corps. Bull. Astronomique 1, 63–74 (1884)
Sikorski, K.: Bisection is optimal. Numer. Math. 40, 111–117 (1982)
Sikorski, K.: Optimal Solution of Nonlinear Equations. Oxford University Press, New York (2001)
Sperner, E.: Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes. Abh. Math. Sem. Hamburg 6, 265–272 (1928)
Stenger, F.: Computing the topological degree of a mapping in \(\mathbb{R} ^n\). Numer. Math. 25, 23–38 (1975)
Vrahatis, M.N.: An error estimation for the method of bisection in \(\mathbb{R} ^n\). Bull. Greek Math. Soc. 27, 161–174 (1986)
Vrahatis, M.N.: Solving systems of nonlinear equations using the nonzero value of the topological degree. ACM Trans. Math. Softw. 14, 312–329 (1988)
Vrahatis, M.N.: CHABIS: a mathematical software package for locating and evaluating roots of systems of nonlinear equations. ACM Trans. Math. Softw. 14, 330–336 (1988)
Vrahatis, M.N.: A variant of Jung’s theorem. Bull. Greek Math. Soc. 29, 1–6 (1988)
Vrahatis, M.N.: A short proof and a generalization of Miranda’s existence theorem. Proc. Amer. Math. Soc. 107, 701–703 (1989)
Vrahatis, M.N.: An efficient method for locating and computing periodic orbits of nonlinear mappings. J. Comput. Phys. 119, 105–119 (1995)
Vrahatis, M.N.: Simplex bisection and Sperner simplices. Bull. Greek Math. Soc. 44, 171–180 (2000)
Vrahatis, M.N.: Generalization of the Bolzano theorem for simplices. Topol. Appl. 202, 40–46 (2016)
Vrahatis, M.N.: Intermediate value theorem for simplices for simplicial approximation of fixed points and zeros. Topol. Appl. 275, 107036 (2020)
Vrahatis, M.N.: Generalizations of the intermediate value theorem for approximating fixed points and zeros of continuous functions. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019, Part II. LNCS, vol. 11974, pp. 223–238. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40616-5_17
Vrahatis, M.N., Bountis, T.C., Kollmann, M.: Periodic orbits and invariant surfaces of 4D nonlinear mappings. Int. J. Bifurcat. Chaos 6, 1425–1437 (1996)
Vrahatis, M.N., Iordanidis, K.I.: A rapid generalized method of bisection for solving systems of non-linear equations. Numer. Math. 49, 123–138 (1986). https://doi.org/10.1007/BF01389620
Vrahatis, M.N., Isliker, H., Bountis, T.C.: Structure and breakdown of invariant tori in a 4D mapping model of accelerator dynamics. Int. J. Bifurcat. Chaos 7, 2707–2722 (1997)
Acknowledgments
The author would like to thank the editors for their kind invitation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vrahatis, M.N. (2022). Survey on Generalizations of the Intermediate Value Theorem and Applications. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2022. Lecture Notes in Computer Science, vol 13366. Springer, Cham. https://doi.org/10.1007/978-3-031-14788-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-14788-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14787-6
Online ISBN: 978-3-031-14788-3
eBook Packages: Computer ScienceComputer Science (R0)