Skip to main content

Survey on Generalizations of the Intermediate Value Theorem and Applications

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13366))

Included in the following conference series:

  • 622 Accesses

Abstract

Generalizations of the intermediate value theorem in several variables are presented. These theorems are very useful in various approaches including the existence of solutions of systems of nonlinear equations, the existence of fixed points of continuous functions as well as the existence of periodic orbits of nonlinear mappings and similarly, fixed points of the Poincaré map on a surface of section. Based on the corresponding criteria for the existence of a solution or a fixed point emanated by the intermediate value theorems, generalized bisection methods for approximating zeros or fixed points of continuous functions are given. These bisection methods require only the algebraic signs of the function values and are of major importance for studying and tackling problems with imprecise information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alefeld, G., Frommer, A., Heindl, G., Mayer, J.: On the existence theorems of Kantorovich, Miranda and Borsuk. Electron. Trans. Numer. Anal. 17, 102–111 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Bánhelyi, B., Csendes, T., Hatvan, L.: On the existence and stabilization of an upper unstable limit cycle of the damped forced pendulum. J. Comput. Appl. Math. 371, 112702 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bolzano, B.: Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwei Werten, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege. Prague (1817)

    Google Scholar 

  4. Brönnimann, H., Emiris, I.Z., Pan, V., Pion, S.: Sign determination in residue number systems. Theor. Comput. Sci. 210, 173–197 (1999)

    Article  MathSciNet  Google Scholar 

  5. Brouwer, L.E.J.: Über Abbildungen von Mannigfaltigkeiten. Math. Ann. 71, 97–115 (1912)

    Article  Google Scholar 

  6. Cauchy, A.-L.: Cours d’Analyse de l’École Royale Polytechnique, Paris (1821). (Reprinted in Oeuvres Completes, Series 2, vol. 3)

    Google Scholar 

  7. Drossos, L., Ragos, O., Vrahatis, M.N., Bountis, T.C.: Method for computing long periodic orbits of dynamical systems. Phys. Rev. E 53(1), 1206–1211 (1996)

    Article  Google Scholar 

  8. Emiris I.Z., Mourrain B., Vrahatis M.N.: Sign methods for counting and computing real roots of algebraic systems. RR-3669, Inria (1999). inria-00073003

    Google Scholar 

  9. Emiris I.Z., Mourrain B., Vrahatis M.N.: Sign methods for enumerating solutions of nonlinear algebraic systems. In: Proceedings of the Fifth Hellenic European Conference on Computer Mathematics and Its Applications, vol. 2, pp. 469–473, Athens, Greece (2002)

    Google Scholar 

  10. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990). https://doi.org/10.1007/978-1-4612-0983-6

    Book  MATH  Google Scholar 

  11. Heindl, G.: Generalizations of theorems of Rohn and Vrahatis. Reliable Comput. 21, 109–116 (2016)

    MathSciNet  Google Scholar 

  12. Jarník, V.: Bernard Bolzano and the foundations of mathematical analysis. In: Bolzano and the Foundations of Mathematical Analysis, pp. 33–42. Society of Czechoslovak Mathematicians and Physicists, Prague (1981)

    Google Scholar 

  13. Kearfott, R.B.: A proof of convergence and an error bound for the method of bisection in \(\mathbb{R} ^n\). Math. Comp. 32(144), 1147–1153 (1978)

    MathSciNet  MATH  Google Scholar 

  14. Kearfott, R.B.: An efficient degree-computation method for a generalized method of bisection. Numer. Math. 32, 109–127 (1979). https://doi.org/10.1007/BF01404868

    Article  MathSciNet  MATH  Google Scholar 

  15. Knaster, B., Kuratowski, K., Mazurkiewicz, S.: Ein Beweis des Fixpunkt-satzes für \(n\)-dimensionale Simplexe. Fund. Math. 14, 132–137 (1929)

    Article  Google Scholar 

  16. Milgrom, P., Mollner, J.: Equilibrium selection in auctions and high stakes games. Econometrica 86(1), 219–261 (2018)

    Article  MathSciNet  Google Scholar 

  17. Miranda, C.: Un’ osservatione su un theorema di Brouwer. Bollettino dell’U.M.I. 3, 5–7 (1940)

    Google Scholar 

  18. Mourrain, B., Vrahatis, M.N., Yakoubsohn, J.C.: On the complexity of isolating real roots and computing with certainty the topological degree. J. Complex. 18(2), 612–640 (2002)

    Article  MathSciNet  Google Scholar 

  19. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Classics in Applied Mathematics vol. 30. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2000)

    Google Scholar 

  20. Poincaré, H.: Sur certaines solutions particulières du problème des trois corps. Comptes rendus de l’Académie des Sciences Paris 91, 251–252 (1883)

    MATH  Google Scholar 

  21. Poincaré, H.: Sur certaines solutions particulières du problème des trois corps. Bull. Astronomique 1, 63–74 (1884)

    MATH  Google Scholar 

  22. Sikorski, K.: Bisection is optimal. Numer. Math. 40, 111–117 (1982)

    Article  MathSciNet  Google Scholar 

  23. Sikorski, K.: Optimal Solution of Nonlinear Equations. Oxford University Press, New York (2001)

    Book  Google Scholar 

  24. Sperner, E.: Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes. Abh. Math. Sem. Hamburg 6, 265–272 (1928)

    Article  MathSciNet  Google Scholar 

  25. Stenger, F.: Computing the topological degree of a mapping in \(\mathbb{R} ^n\). Numer. Math. 25, 23–38 (1975)

    Article  MathSciNet  Google Scholar 

  26. Vrahatis, M.N.: An error estimation for the method of bisection in \(\mathbb{R} ^n\). Bull. Greek Math. Soc. 27, 161–174 (1986)

    MATH  Google Scholar 

  27. Vrahatis, M.N.: Solving systems of nonlinear equations using the nonzero value of the topological degree. ACM Trans. Math. Softw. 14, 312–329 (1988)

    Article  MathSciNet  Google Scholar 

  28. Vrahatis, M.N.: CHABIS: a mathematical software package for locating and evaluating roots of systems of nonlinear equations. ACM Trans. Math. Softw. 14, 330–336 (1988)

    Article  MathSciNet  Google Scholar 

  29. Vrahatis, M.N.: A variant of Jung’s theorem. Bull. Greek Math. Soc. 29, 1–6 (1988)

    MathSciNet  MATH  Google Scholar 

  30. Vrahatis, M.N.: A short proof and a generalization of Miranda’s existence theorem. Proc. Amer. Math. Soc. 107, 701–703 (1989)

    MathSciNet  MATH  Google Scholar 

  31. Vrahatis, M.N.: An efficient method for locating and computing periodic orbits of nonlinear mappings. J. Comput. Phys. 119, 105–119 (1995)

    Article  MathSciNet  Google Scholar 

  32. Vrahatis, M.N.: Simplex bisection and Sperner simplices. Bull. Greek Math. Soc. 44, 171–180 (2000)

    MathSciNet  MATH  Google Scholar 

  33. Vrahatis, M.N.: Generalization of the Bolzano theorem for simplices. Topol. Appl. 202, 40–46 (2016)

    Article  MathSciNet  Google Scholar 

  34. Vrahatis, M.N.: Intermediate value theorem for simplices for simplicial approximation of fixed points and zeros. Topol. Appl. 275, 107036 (2020)

    Article  MathSciNet  Google Scholar 

  35. Vrahatis, M.N.: Generalizations of the intermediate value theorem for approximating fixed points and zeros of continuous functions. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019, Part II. LNCS, vol. 11974, pp. 223–238. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40616-5_17

    Chapter  MATH  Google Scholar 

  36. Vrahatis, M.N., Bountis, T.C., Kollmann, M.: Periodic orbits and invariant surfaces of 4D nonlinear mappings. Int. J. Bifurcat. Chaos 6, 1425–1437 (1996)

    Article  Google Scholar 

  37. Vrahatis, M.N., Iordanidis, K.I.: A rapid generalized method of bisection for solving systems of non-linear equations. Numer. Math. 49, 123–138 (1986). https://doi.org/10.1007/BF01389620

    Article  MathSciNet  MATH  Google Scholar 

  38. Vrahatis, M.N., Isliker, H., Bountis, T.C.: Structure and breakdown of invariant tori in a 4D mapping model of accelerator dynamics. Int. J. Bifurcat. Chaos 7, 2707–2722 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the editors for their kind invitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N. Vrahatis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vrahatis, M.N. (2022). Survey on Generalizations of the Intermediate Value Theorem and Applications. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2022. Lecture Notes in Computer Science, vol 13366. Springer, Cham. https://doi.org/10.1007/978-3-031-14788-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14788-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14787-6

  • Online ISBN: 978-3-031-14788-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics