Abstract
The current state of the art in watermarked public-key encryption schemes under standard cryptographic assumptions suggests that extracting the embedded message requires either linear time in the number of marked keys or the a-priori knowledge of the marked key employed in the decoder. We present the first scheme that obviates these restrictions in the secret-key marking model, i.e., the setting where extraction is performed using a private extraction key. Our construction offers constant time extraction complexity with constant size keys and ciphertexts and is secure under standard assumptions, namely the Decisional Composite Residuosity Assumption [Eurocrypt’99] and the Decisional Diffie Hellman in prime order subgroups of square higher order residues.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
To see this, consider A DDH challenge for the two underlying groups \(\langle g_1^{q'}, y_\mathsf {l}, G_\mathsf {l}, Y_{\mathsf {l}}\rangle \) \(\langle g_1^{p'}, y_\mathsf {r}, G_\mathsf {r}, Y_{\mathsf {r}}\rangle \), we can combine them to \(\langle g_1, y_\mathsf {l}\cdot y_\mathsf {r}, G_\mathsf {l}\cdot G_\mathsf {r}, Y_{\mathsf {l}}^{q'} \cdot Y_{\mathsf {r}}^{p'} \rangle \). Observe that if the challenge pair is DDH distributed then \(G_\mathsf {l}\cdot G_\mathsf {r} = g_1^{q' r_\mathsf {l}+ p' r_\mathsf {r}} \) and \(Y_\mathsf {l}^{q'}\cdot Y_\mathsf {r}^{p'} = y_\mathsf {l}^{q' r_\mathsf {l}} y_\mathsf {r}^{ p' r_\mathsf {r}} = g_1^{ (q')^2 t_\mathsf {l} r_\mathsf {l} + (p')^2 t_\mathsf {r} r_\mathsf {r} } \). Now observe that \( (q' t_\mathsf {l} + p' t_\mathsf {r})(q' r_\mathsf {l} + p' r_\mathsf {r}) = (q')^2 t_\mathsf {l} r_\mathsf {l} + (p')^2 t_\mathsf {r} r_\mathsf {r} \bmod p'q'\). Given that \(y_\mathsf {l}\cdot y_\mathsf {r} = g_1^{q' t_\mathsf {l}+ p' t_\mathsf {r}} \), this establishes that the combined challenge is DDH distributed. For the other case, when the challenge pair follows the random distribution, then \(Y_\mathsf {l}^{q'}\cdot Y_\mathsf {r}^{p'} = y_\mathsf {l}^{q' r_\mathsf {l}'} y_\mathsf {r}^{ p' r_\mathsf {r}'} = g_1^{ (q')^2 t_\mathsf {l} r_\mathsf {l}' + (p')^2 t_\mathsf {r} r_\mathsf {r}' } \) that can be easily seen to be uniformly distributed over \(\mathcal {X}_{n^2}\) and as a result the combined challenge is randomly distributed.
References
Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional encryption. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 174–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_8
Baldimtsi, F., Kiayias, A., Samari, K.: Watermarkable public key encryption with efficient extraction under standard assumptions. IACR Cryptology ePrint Archive (2022)
Baldimtsi, F., Kiayias, A., Samari, K.: Watermarking public-key cryptographic functionalities and implementations. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. LNCS, vol. 10599, pp. 173–191. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69659-1_10
Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)
Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1
Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: FOCS 1997, pp. 394–403 (1997)
Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41
Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_17
Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_34
Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: CCS 2006, pp. 211–220, November 2006
Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_27
Brakerski, Z., Chandran, N., Goyal, V., Jain, A., Sahai, A., Segev, G.: Hierarchical functional encryption. In: 8th Innovations in Theoretical Computer Science Conference, ITCS, pp. 8:1–8:27 (2017)
Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_25
Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. SIAM J. Comput. 47(6), 2157–2202 (2018)
Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: STOC 2016, pp. 1115–1127, June 2016
Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revoking. In: PODC 2003, pp. 190–199, July 2003
Goyal, R., Kim, S., Manohar, N., Waters, B., Wu, D.J.: Watermarking public-key cryptographic primitives. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 367–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_12
Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning with errors. In: STOC, pp. 660–670 (2018)
Goyal, R., Koppula, V., Waters, B.: New approaches to traitor tracing with embedded identities. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 149–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_6
Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_11
Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_30
Kim, S., Wu, D.J.: Watermarking PRFs from lattices: stronger security via extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 335–366. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_11
Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lattice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_17
Nishimaki, R.: Equipping public-key cryptographic primitives with watermarking (or: a hole is to watermark). In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 179–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_7
Nishimaki, R.: How to watermark cryptographic functions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 111–125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_7
Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to embed arbitrary information in a key. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 388–419. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_14
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under standard assumptions: public marking and security with extraction queries. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 669–698. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_24
Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC 2014, pp. 475–484 (2014)
Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Collusion resistant watermarking schemes for cryptographic functionalities. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 371–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_14
Yang, R., Au, M.H., Yu, Z., Xu, Q.: Collusion resistant watermarkable PRFs from standard assumptions. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 590–620. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_20
Yoshida, M., Fujiwara, T.: Toward digital watermarking for cryptographic data. IEICE Trans. 94–A(1), 270–272 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Baldimtsi, F., Kiayias, A., Samari, K. (2022). Watermarkable Public Key Encryption with Efficient Extraction Under Standard Assumptions. In: Galdi, C., Jarecki, S. (eds) Security and Cryptography for Networks. SCN 2022. Lecture Notes in Computer Science, vol 13409. Springer, Cham. https://doi.org/10.1007/978-3-031-14791-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-14791-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14790-6
Online ISBN: 978-3-031-14791-3
eBook Packages: Computer ScienceComputer Science (R0)