Skip to main content

Watermarkable Public Key Encryption with Efficient Extraction Under Standard Assumptions

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2022)

Abstract

The current state of the art in watermarked public-key encryption schemes under standard cryptographic assumptions suggests that extracting the embedded message requires either linear time in the number of marked keys or the a-priori knowledge of the marked key employed in the decoder. We present the first scheme that obviates these restrictions in the secret-key marking model, i.e., the setting where extraction is performed using a private extraction key. Our construction offers constant time extraction complexity with constant size keys and ciphertexts and is secure under standard assumptions, namely the Decisional Composite Residuosity Assumption [Eurocrypt’99] and the Decisional Diffie Hellman in prime order subgroups of square higher order residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    To see this, consider A DDH challenge for the two underlying groups \(\langle g_1^{q'}, y_\mathsf {l}, G_\mathsf {l}, Y_{\mathsf {l}}\rangle \) \(\langle g_1^{p'}, y_\mathsf {r}, G_\mathsf {r}, Y_{\mathsf {r}}\rangle \), we can combine them to \(\langle g_1, y_\mathsf {l}\cdot y_\mathsf {r}, G_\mathsf {l}\cdot G_\mathsf {r}, Y_{\mathsf {l}}^{q'} \cdot Y_{\mathsf {r}}^{p'} \rangle \). Observe that if the challenge pair is DDH distributed then \(G_\mathsf {l}\cdot G_\mathsf {r} = g_1^{q' r_\mathsf {l}+ p' r_\mathsf {r}} \) and \(Y_\mathsf {l}^{q'}\cdot Y_\mathsf {r}^{p'} = y_\mathsf {l}^{q' r_\mathsf {l}} y_\mathsf {r}^{ p' r_\mathsf {r}} = g_1^{ (q')^2 t_\mathsf {l} r_\mathsf {l} + (p')^2 t_\mathsf {r} r_\mathsf {r} } \). Now observe that \( (q' t_\mathsf {l} + p' t_\mathsf {r})(q' r_\mathsf {l} + p' r_\mathsf {r}) = (q')^2 t_\mathsf {l} r_\mathsf {l} + (p')^2 t_\mathsf {r} r_\mathsf {r} \bmod p'q'\). Given that \(y_\mathsf {l}\cdot y_\mathsf {r} = g_1^{q' t_\mathsf {l}+ p' t_\mathsf {r}} \), this establishes that the combined challenge is DDH distributed. For the other case, when the challenge pair follows the random distribution, then \(Y_\mathsf {l}^{q'}\cdot Y_\mathsf {r}^{p'} = y_\mathsf {l}^{q' r_\mathsf {l}'} y_\mathsf {r}^{ p' r_\mathsf {r}'} = g_1^{ (q')^2 t_\mathsf {l} r_\mathsf {l}' + (p')^2 t_\mathsf {r} r_\mathsf {r}' } \) that can be easily seen to be uniformly distributed over \(\mathcal {X}_{n^2}\) and as a result the combined challenge is randomly distributed.

References

  1. Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional encryption. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 174–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_8

    Chapter  Google Scholar 

  2. Baldimtsi, F., Kiayias, A., Samari, K.: Watermarkable public key encryption with efficient extraction under standard assumptions. IACR Cryptology ePrint Archive (2022)

    Google Scholar 

  3. Baldimtsi, F., Kiayias, A., Samari, K.: Watermarking public-key cryptographic functionalities and implementations. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. LNCS, vol. 10599, pp. 173–191. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69659-1_10

    Chapter  Google Scholar 

  4. Barak, B., et al.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

    Article  MathSciNet  Google Scholar 

  5. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  6. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: FOCS 1997, pp. 394–403 (1997)

    Google Scholar 

  7. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41

    Chapter  Google Scholar 

  8. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_17

    Chapter  Google Scholar 

  9. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_34

    Chapter  Google Scholar 

  10. Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: CCS 2006, pp. 211–220, November 2006

    Google Scholar 

  11. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_27

    Chapter  Google Scholar 

  12. Brakerski, Z., Chandran, N., Goyal, V., Jain, A., Sahai, A., Segev, G.: Hierarchical functional encryption. In: 8th Innovations in Theoretical Computer Science Conference, ITCS, pp. 8:1–8:27 (2017)

    Google Scholar 

  13. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_25

    Chapter  Google Scholar 

  14. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. SIAM J. Comput. 47(6), 2157–2202 (2018)

    Article  MathSciNet  Google Scholar 

  15. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: STOC 2016, pp. 1115–1127, June 2016

    Google Scholar 

  16. Dodis, Y., Fazio, N., Kiayias, A., Yung, M.: Scalable public-key tracing and revoking. In: PODC 2003, pp. 190–199, July 2003

    Google Scholar 

  17. Goyal, R., Kim, S., Manohar, N., Waters, B., Wu, D.J.: Watermarking public-key cryptographic primitives. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 367–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_12

    Chapter  Google Scholar 

  18. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning with errors. In: STOC, pp. 660–670 (2018)

    Google Scholar 

  19. Goyal, R., Koppula, V., Waters, B.: New approaches to traitor tracing with embedded identities. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 149–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_6

    Chapter  Google Scholar 

  20. Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_11

    Chapter  Google Scholar 

  21. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_30

    Chapter  Google Scholar 

  22. Kim, S., Wu, D.J.: Watermarking PRFs from lattices: stronger security via extractable PRFs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 335–366. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_11

    Chapter  Google Scholar 

  23. Kim, S., Wu, D.J.: Watermarking cryptographic functionalities from standard lattice assumptions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 503–536. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_17

    Chapter  Google Scholar 

  24. Nishimaki, R.: Equipping public-key cryptographic primitives with watermarking (or: a hole is to watermark). In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 179–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_7

    Chapter  Google Scholar 

  25. Nishimaki, R.: How to watermark cryptographic functions. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 111–125. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_7

    Chapter  Google Scholar 

  26. Nishimaki, R., Wichs, D., Zhandry, M.: Anonymous traitor tracing: how to embed arbitrary information in a key. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 388–419. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_14

    Chapter  MATH  Google Scholar 

  27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  28. Quach, W., Wichs, D., Zirdelis, G.: Watermarking PRFs under standard assumptions: public marking and security with extraction queries. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 669–698. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_24

    Chapter  Google Scholar 

  29. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC 2014, pp. 475–484 (2014)

    Google Scholar 

  30. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Collusion resistant watermarking schemes for cryptographic functionalities. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 371–398. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_14

    Chapter  Google Scholar 

  31. Yang, R., Au, M.H., Yu, Z., Xu, Q.: Collusion resistant watermarkable PRFs from standard assumptions. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 590–620. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_20

    Chapter  Google Scholar 

  32. Yoshida, M., Fujiwara, T.: Toward digital watermarking for cryptographic data. IEICE Trans. 94–A(1), 270–272 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foteini Baldimtsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baldimtsi, F., Kiayias, A., Samari, K. (2022). Watermarkable Public Key Encryption with Efficient Extraction Under Standard Assumptions. In: Galdi, C., Jarecki, S. (eds) Security and Cryptography for Networks. SCN 2022. Lecture Notes in Computer Science, vol 13409. Springer, Cham. https://doi.org/10.1007/978-3-031-14791-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14791-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14790-6

  • Online ISBN: 978-3-031-14791-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics