Skip to main content

On the Related-Key Attack Security of Authenticated Encryption Schemes

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13409))

Included in the following conference series:

Abstract

Related-key attacks (RKA) are powerful cryptanalytic attacks, where the adversary can tamper with the secret key of a cryptographic scheme. Since their invention, RKA security has been an important design goal in cryptography, and various works aim at designing cryptographic primitives that offer protection against related-key attacks. At EUROCRYPT’03, Bellare and Kohno introduced the first formal treatment of related-key attacks focusing on pseudorandom functions and permutations. This was later extended to cover other primitives such as signatures and public key encryption schemes, but until now, a comprehensive formal security analysis of authenticated encryption schemes with associated data (AEAD) in the RKA setting has been missing. The main contribution of our work is to close this gap for the relevant class of nonce-based AEAD schemes.

To this end, we revisit the common approach to construct AEAD from encryption and message authentication. We extend the traditional security notion of AEAD to the RKA setting and consider an adversary that can tamper with the key \( K _{e}\) and \( K _{m}\) of the underlying encryption and MAC, respectively. We study two security models. In our weak setting, we require that tampering will change both \( K _{e}\) and \( K _{m}\), while in our strong setting, tampering can be arbitrary, i.e., only one key might be affected. We then study the security of the standard composition methods by analysing the nonce-based AEAD schemes N1 (Encrypt-and-MAC), N2 (Encrypt-then-MAC), and N3 (MAC-then-Encrypt) due to Namprempre, Rogaway, and Shrimpton (EUROCRYPT’14). We show that these schemes are weakly RKA secure, while they can be broken under a strong related-key attack. Finally, based on the N3 construction, we give a novel AEAD scheme that achieves our stronger notion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Associated data corresponds to header information that has to be authenticated but does not need to be confidential.

  2. 2.

    A similar question using the Cartesian product of the related-key deriving functions from the underlying primitives is answered in [5] for Feistel constructions.

  3. 3.

    Note that the adversary can still ask for several encryptions under each key.

  4. 4.

    It is questionable whether RKD functions that depend on the actual primitive are relevant in practice.

  5. 5.

    The latter restriction can also be handled by letting the encryption oracle return the same response as it did when the query was made the first time. For ease of exposition, we simply forbid such queries to avoid additional bookkeeping in the security games.

  6. 6.

    Note that there is a negligible chance that the ciphertexts will agree on their first \(| M |\) bits which we drop here for simplicity.

  7. 7.

    One solution would be to use the key derivation technique proposed in [7]. However, this requires the usage of an additional PRF on top of the existing AE scheme.

  8. 8.

    This transformation allows us to use a normal PRP for the simulation, and not a strong PRP.

References

  1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security for pseudorandom functions beyond the linear barrier. J. Cryptol. 31(4), 917–964 (2018)

    Article  MathSciNet  Google Scholar 

  2. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_15

    Chapter  Google Scholar 

  3. Albrecht, M.R., Farshim, P., Paterson, K.G., Watson, G.J.: On cipher-dependent related-key attacks in the ideal-cipher model. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 128–145. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_8

    Chapter  Google Scholar 

  4. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and applications. In: ICS (2011)

    Google Scholar 

  5. Barbosa, M., Farshim, P.: The related-key analysis of Feistel constructions. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 265–284. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_14

    Chapter  Google Scholar 

  6. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 666–684. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_36

    Chapter  Google Scholar 

  7. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 486–503. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_26

    Chapter  Google Scholar 

  8. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_31

    Chapter  Google Scholar 

  9. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41

    Chapter  Google Scholar 

  10. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    Chapter  Google Scholar 

  11. Bernstein, D.J.: CAESAR: competition for authenticated encryption: security, applicability, and robustness (2014)

    Google Scholar 

  12. Bhattacharyya, R., Roy, A.: Secure message authentication against related-key attack. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 305–324. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_16

    Chapter  Google Scholar 

  13. Biham, E.: New types of cryptanalytic attacks using related keys (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_34

    Chapter  Google Scholar 

  14. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_30

    Chapter  Google Scholar 

  15. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_1

    Chapter  Google Scholar 

  16. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_14

    Chapter  Google Scholar 

  17. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_4

    Chapter  Google Scholar 

  18. Degabriele, J.P., Janson, C., Struck, P.: Sponges resist leakage: the case of authenticated encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp. 209–240. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_8

    Chapter  Google Scholar 

  19. Dunkelman, O., Keller, N., Kim, J.: Related-key rectangle attack on the full SHACAL-1. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 28–44. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74462-7_3

    Chapter  Google Scholar 

  20. Faust, S., Krämer, J., Orlt, M., Struck, P.: On the related-key attack security of authenticated encryption schemes. Cryptology ePrint Archive, Paper 2022/140 (2022)

    Google Scholar 

  21. Han, S., Liu, S., Lyu, L.: Efficient KDM-CCA secure public-key encryption for polynomial functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 307–338. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_11

    Chapter  Google Scholar 

  22. Harris, D.G.: Critique of the related-key attack concept. Des. Codes Cryptogr. 59, 159–168 (2011)

    Article  MathSciNet  Google Scholar 

  23. Isobe, T.: A single-key attack on the full GOST block cipher. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 290–305. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_17

    Chapter  Google Scholar 

  24. Knudsen, L.R.: Cryptanalysis of LOKI 91. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1_62

    Chapter  Google Scholar 

  25. Knudsen, L.R., Kohno, T.: Analysis of RMAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 182–191. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_14

    Chapter  Google Scholar 

  26. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  27. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  28. Koo, B., Hong, D., Kwon, D.: Related-key attack on the full HIGHT. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 49–67. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24209-0_4

    Chapter  Google Scholar 

  29. Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryption. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 559–583. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_22

    Chapter  Google Scholar 

  30. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 257–274. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_15

    Chapter  Google Scholar 

  31. National Institute of Standards and Technology. Lightweight cryptography standardization process (2015)

    Google Scholar 

  32. Rescorla, E.: the transport layer security (TLS) protocol version 1.3. RFC 8446 (2018)

    Google Scholar 

  33. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS 2002 (2002)

    Google Scholar 

  34. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-4_22

    Chapter  MATH  Google Scholar 

  35. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23

    Chapter  Google Scholar 

  36. Vaudenay, S.: Clever arbiters versus malicious adversaries - on the gap between known-input security and chosen-input security. In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J. (eds.) The New Codebreakers. LNCS, vol. 9100, pp. 497–517. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49301-4_31

    Chapter  MATH  Google Scholar 

  37. Xagawa, K.: Message authentication codes secure against additively related-key attacks. Cryptology ePrint Archive, Report 2013/111 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the German Research Foundation (DFG) – SFB 1119 – 236615297 and the Emmy Noether Program FA 1320/1-1 of the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Orlt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faust, S., Krämer, J., Orlt, M., Struck, P. (2022). On the Related-Key Attack Security of Authenticated Encryption Schemes. In: Galdi, C., Jarecki, S. (eds) Security and Cryptography for Networks. SCN 2022. Lecture Notes in Computer Science, vol 13409. Springer, Cham. https://doi.org/10.1007/978-3-031-14791-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14791-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14790-6

  • Online ISBN: 978-3-031-14791-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics