Skip to main content

Black-Box Anonymous Commit-and-Prove

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13409))

Included in the following conference series:

  • 689 Accesses

Abstract

Commit-and-prove is a building block that allows a party to commit to a secret input and then later prove something about it. This is a pillar of many cryptographic protocols and especially the ones underlying anonymous systems. In anonymous systems, often there is a set of public commitments, and a prover wants to prove a property about one of the inputs committed in the set, while hiding which one. This latter property gives the prover anonymity within the set.

Currently, there are numerous commit-and-prove protocols in the anonymous setting from various computational and setup assumptions. However, all such approaches are non-black-box in the cryptographic primitive. In fact, there exists no anonymous black-box construction of commit-and-prove protocols, under any computational or setup assumption. This is despite the fact that, when anonymity is not required, black-box commit-and-prove protocols are well known.

Is this inherent in the anonymous setting?

In this paper we provide a partial answer to the above question by constructing the first (one-time) black-box commit-and-prove protocol in the anonymous setting. We do so by first introducing a new primitive that we call Partially Openable Commitment (POC), and instantiating it in a black-box way from a Random Oracle. Next we show a black-box commit-and-prove protocol based on POC. From a theoretical standpoint, our result reduces the gap between known black-box feasibility results in the non-anonymous setting and the anonymous setting. From a practical standpoint, we show that our protocol can be very efficient for certain relations of interest.

Supported by NSF grants #1718074, #1764025.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We remark that partially openable commitment are different from trapdoor or UC-secure [7] commitments. In the latter, the commitments can be opened by anyone who has a trapdoor, and the equivocation property is used in the security proof, not the protocol. They are also different from Mercurial Commitments [8] where the prover has the ability to “tease” only commitments she created.

References

  1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: Proceedings of the 2017 ACM SIGSAC, pp. 2087–2104 (2017)

    Google Scholar 

  2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (ed.) ACM CCS 93, pp. 62–73. ACM Press, November 1993

    Google Scholar 

  3. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptology ePrint Archive 2018, 46 (2018)

    Google Scholar 

  4. Ben-Sasson, E.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

    Google Scholar 

  5. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, SP, pp. 315–334 (2018)

    Google Scholar 

  6. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5

    Chapter  Google Scholar 

  7. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_2

    Chapter  Google Scholar 

  8. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commitments with applications to zero-knowledge sets. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_25

    Chapter  Google Scholar 

  9. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean circuits. In: 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, 10–12 August 2016, pp. 1069–1083 (2016)

    Google Scholar 

  10. Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer Society Press, October 2012

    Google Scholar 

  11. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press, June 2007

    Google Scholar 

  12. Ishai, Y., Weiss, M.: Probabilistically checkable proofs of proximity with zero-knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 121–145. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_6

    Chapter  MATH  Google Scholar 

  13. Kilian, J.: A general completeness theorem for two-party games. In: 23rd ACM STOC, pp. 553–560. ACM Press, May 1991

    Google Scholar 

  14. Kiyoshima, S.: Round-optimal black-box commit-and-prove with succinct communication. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 533–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_19

    Chapter  Google Scholar 

  15. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: IEEE Symposium on Security and Privacy, pp. 839–858 (2016)

    Google Scholar 

  16. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–411 (2013)

    Google Scholar 

  17. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 339–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_17

    Chapter  Google Scholar 

  18. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_24

    Chapter  MATH  Google Scholar 

  19. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  20. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  21. Z. Zcash project (2013). https://z.cash/

  22. Zhang, B., Oliynykov, R., Balogun, H.: A treasury system for cryptocurrencies: enabling better collaborative intelligence. In: Network and Distributed System Security Symposium, NDSS (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Scafuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scafuro, A. (2022). Black-Box Anonymous Commit-and-Prove. In: Galdi, C., Jarecki, S. (eds) Security and Cryptography for Networks. SCN 2022. Lecture Notes in Computer Science, vol 13409. Springer, Cham. https://doi.org/10.1007/978-3-031-14791-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14791-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14790-6

  • Online ISBN: 978-3-031-14791-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics