Skip to main content

Mix-Nets from Re-randomizable and Replayable CCA-Secure Public-Key Encryption

  • Conference paper
  • First Online:
Security and Cryptography for Networks (SCN 2022)

Abstract

Mix-nets are protocols that allow a set of senders to send messages anonymously. Faonio et al.  (ASIACRYPT’19) showed how to instantiate mix-net protocols based on Public-Verifiable Re-randomizable Replayable CCA-secure (Rand-RCCA) PKE schemes. The bottleneck of their approach is that public-verifiable Rand-RCCA PKEs are less efficient than typical CPA-secure re-randomizable PKEs. In this paper, we revisit their mix-net protocol, showing how to get rid of the cumbersome public-verifiability property, and we give a more efficient instantiation for the mix-net protocol based on a (non publicly-verifiable) Rand-RCCA scheme. Additionally, we give a more careful security analysis of their mix-net protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This notion is sometimes called verifiability, however, we prefer to use the term “auditability” to avoid confusion with the verifiability of the ciphertexts property.

References

  1. Abe, M.: Universally verifiable mix-net with verification work independent of the number of mix-servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 437–447. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054144

    Chapter  Google Scholar 

  2. Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48000-6_21

    Chapter  Google Scholar 

  3. Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_23

    Chapter  Google Scholar 

  4. Adida, B., Wikström, D.: Offline/online mixing. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 484–495. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_43

    Chapter  Google Scholar 

  5. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_17

    Chapter  Google Scholar 

  6. Benaloh, J.: Simple verifiable elections. In: 2006 USENIX/ACCURATE Electronic Voting Technology Workshop (EVT 06). USENIX Association, Vancouver, B.C., August 2006. https://www.usenix.org/conference/evt-06/simple-verifiable-elections

  7. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145 (2001)

    Google Scholar 

  8. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_2

    Chapter  Google Scholar 

  9. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_33

    Chapter  Google Scholar 

  10. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_18

    Chapter  Google Scholar 

  11. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981). https://doi.org/10.1145/358549.358563

  12. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055717

    Chapter  Google Scholar 

  13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4

    Chapter  Google Scholar 

  14. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_36

    Chapter  Google Scholar 

  15. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

    Chapter  Google Scholar 

  16. Faonio, A., Fiore, D.: Improving the efficiency of re-randomizable and replayable CCA secure public key encryption. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020, Part I. LNCS, vol. 12146, pp. 271–291. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4_14

    Chapter  MATH  Google Scholar 

  17. Faonio, A., Fiore, D., Herranz, J., Ràfols, C.: Structure-preserving and re-randomizable RCCA-secure public key encryption and its applications. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 159–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_6

    Chapter  Google Scholar 

  18. Faonio, A., Russo, L.: Mix-nets from re-randomizable and replayable CCA-secure public-key encryption. Cryptology ePrint Archive, Paper 2022/856 (2022). https://eprint.iacr.org/2022/856

  19. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_22

    Chapter  Google Scholar 

  20. Groth, J.: A verifiable secret shuffe of homomorphic encryptions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_11

    Chapter  Google Scholar 

  21. Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_9

    Chapter  Google Scholar 

  22. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. Cryptol. 23(4), 546–579 (2010)

    Article  MathSciNet  Google Scholar 

  23. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_22

    Chapter  Google Scholar 

  24. Jacobson, M., M’Raïhi, D.: Mix-based electronic payments. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 157–173. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8_13

    Chapter  Google Scholar 

  25. Libert, B., Peters, T., Qian, C.: Structure-preserving chosen-ciphertext security with shorter verifiable ciphertexts. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 247–276. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_11

    Chapter  Google Scholar 

  26. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM CCS 2001, pp. 116–125 (2001)

    Google Scholar 

  27. Park, C., Itoh, K., Kurosawa, K.: Efficient anonymous channel and all/nothing election scheme. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 248–259. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_21

    Chapter  Google Scholar 

  28. Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_29

    Chapter  Google Scholar 

  29. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - a practical solution to the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X_32

    Chapter  Google Scholar 

  30. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9_7

    Chapter  Google Scholar 

  31. Wang, Y., Chen, R., Yang, G., Huang, X., Wang, B., Yung, M.: Receiver-anonymity in rerandomizable RCCA-secure cryptosystems resolved. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 270–300. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_10

    Chapter  Google Scholar 

  32. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_15

    Chapter  Google Scholar 

  33. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02620-1_28

    Chapter  Google Scholar 

  34. Wikström, D.: Verificatum (2010). https://www.verificatum.com

Download references

Acknowledgements

This work has been partially supported by the MESRI-BMBF French-German joint project named PROPOLIS (ANR-20-CYAL-0004-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Russo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faonio, A., Russo, L. (2022). Mix-Nets from Re-randomizable and Replayable CCA-Secure Public-Key Encryption. In: Galdi, C., Jarecki, S. (eds) Security and Cryptography for Networks. SCN 2022. Lecture Notes in Computer Science, vol 13409. Springer, Cham. https://doi.org/10.1007/978-3-031-14791-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14791-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14790-6

  • Online ISBN: 978-3-031-14791-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics