Skip to main content

Important Features Associated with Depression Prediction and Explainable AI

  • Conference paper
  • First Online:
Well-Being in the Information Society: When the Mind Breaks (WIS 2022)

Abstract

Depression is a debilitating disease that leaves individuals persistently feeling sad or hopeless for more than two weeks affecting more than 300 million people globally. We applied several machine learning models with model explainability to a publicly available depression dataset. Several experiments were performed to assess the use of feature selection methods and technique to address dataset imbalance on diagnostic accuracy. The top performing model was obtained by logistic regression with excellent performance metrics (91% accuracy, 93% sensitivity, 85% specificity, 93% precision, 93% F1-score and 0.78 Matthews correlation coefficient). Feature importance was also generated for the best model. Explainable artificial intelligence method using LIME was applied to help understand the reasoning behind the model’s classification of depression leading to better understanding of physicians, thus demonstrating its use in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: Mental Health and Substance Abuse (2021). http://www.emro.who.int/mnh/what-you-can-do/index.html#accordionpan4 Last accessed 10 Jan 2022

  2. Rossi, R., Jannini, T.B., Socci, V., Pacitti, F., Lorenzo, G.D.: Stressful life events and resilience during the COVID-19 lockdown measures in italy: association with mental health outcomes and age. Frontiers in Psychiatry 12, 635832 (2021). https://doi.org/10.3389/fpsyt.2021.635832

    Article  Google Scholar 

  3. Li, H., Ge, S., Greene, B., Dunbar-Jacob, J.: Depression in the Context of Chronic Disease in the United States and China. Int. J. Nurs. Sci. 6(1), 117–122 (2019). https://doi.org/10.1016/j.ijnss.2018.11.007

    Article  Google Scholar 

  4. Uddin, M.Z., Dysthe, K.K., Følstad, A., Brandtzaeg, P.B.: Deep learning for prediction of depressive symptoms in a large textual dataset. Neural Comp. Appl. 34, 721–744 (2022). https://doi.org/10.1007/s00521-021-06426-4

    Article  Google Scholar 

  5. Grzenda, A., Speier, W., Siddarth, P., Pant, A., Krause-Sorio, B., Narr, K., Lavretsky, H.: Machine learning prediction of treatment outcome in late-life depression. Frontiers in Psychiatry 12 (2021). https://doi.org/10.3389/fpsyt.2021.738494

  6. Lin, S., Wu, Y., Fang, Y.: Comparison of regression and machine learning methods in depression forecasting among home-based elderly chinese: a community based study. Frontiers in psychiatry 12, 764806 (2022). https://doi.org/10.3389/fpsyt.2021.764806

    Article  Google Scholar 

  7. Nam, S.M., Peterson, T.A., Seo, K.Y., Han, H.W., Kang, J.I.: Discovery of depression-associated factors from a nationwide population-based survey: epidemiological study using machine learning and network analysis. J. Medi. Intern. Res. 23(6), e27344 (2021). https://doi.org/10.2196/27344

    Article  Google Scholar 

  8. Sabab Zulfiker, M., Kabir, N., Biswas, A.A., Nazneen, T., Shorif Uddin, M.: An in-depth analysis of machine learning approaches to predict depression. Curr. Res. Behavi. Sci. 2, 100044 (2021). https://doi.org/10.1016/j.crbeha.2021.100044

    Article  Google Scholar 

  9. Nemesure, M.D., Heinz, M.V., Huang, R., Jacobson, N.: Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence. Scientific Reports 11, 1980 (2021). https://doi.org/10.1038/s41598-021-81368-4

    Article  Google Scholar 

  10. Sousa, S., Paúl, C., Teixeira, L.: Predictors of major depressive disorder in older people. Int. J. Environm. Res. Pub. Health 18, 11894 (2021). https://doi.org/10.3390/ijerph182211894

    Article  Google Scholar 

  11. Richter, T., Fishbain, B., Richter-Levin, G., Okon-Singer, H.: Machine Learning-Based Behavioral Diagnostic Tools for Depression: Advances, Challenges, and Future Directions. J. Personal. Medi. 11, 957 (2021). https://doi.org/10.3390/jpm11100957

    Article  Google Scholar 

  12. Vincent, P., Mahendran, N., Nebhen, J., Deepa, N., Srinivasan, K., Hu, Y.C.: Performance assessment of certain machine learning models for predicting the major depressive disorder among IT professionals during pandemic times. Computational intelligence and neuroscience 2021, 9950332 (2021). https://doi.org/10.1155/2021/9950332

    Article  Google Scholar 

  13. Jan, Z., et al.: The role of machine learning in diagnosing bipolar disorder: scoping review. J. Medi. Intern. Res. 23(11), e29749 (2021). https://doi.org/10.2196/29749

  14. Sabab31/Depression-Repository: https://github.com/Sabab31/Depression-Repository.git last accessed 10 Nov 2021

  15. DemircioÄŸlu, A.: Measuring the bias of incorrect application of feature selection when using cross-validation in radiomics. Insights Imaging 12, 172 (2021). https://doi.org/10.1186/s13244-021-01115-1

    Article  Google Scholar 

  16. Chang, W., Ji, X., Wang, L., Liu, H., Zhang, Y., Chen, B., Zhou, S.: A machine-learning method of predicting vital capacity plateau value for ventilatory Pump failure based on data mining. Healthcare 9, 1306 (2021). https://doi.org/10.3390/healthcare9101306

    Article  Google Scholar 

  17. Li, D., et al.: Application of machine learning classifier to candida auris drug resistance analysis. Frontiers in Cellular and Infection Microbiology 11 (2021). https://doi.org/10.3389/fcimb.2021.742062

  18. Rieta, J.J., Senan, E.M., Abunadi, I., Jadhav, M., Fati, S.M.: Score and correlation coefficient-based feature selection for predicting heart failure diagnosis by using machine learning algorithms. Computational and Mathematical Methods in Medicine 2021, article 8500314 (2021). https://doi.org/10.1155/2021/8500314

  19. Magboo, V.P.C., Magboo, M.S.A.: Machine learning classifiers on breast cancer recurrences. Procedia Computer Science 192, 2742–2752 (2021). https://doi.org/10.1016/j.procs.2021.09.044

    Article  Google Scholar 

  20. Çakır, H., İncereis, N., Akgün, B.T., Taştemir, A.S.Y.: Comparison of sampling methods using machine learning and deep learning algorithms with an imbalanced data set for the prevention of violence against physicians. In: 2021 15th Turkish National Software Engineering Symposium (UYMS), pp. 1–7 (2021). https://doi.org/10.1109/UYMS54260.2021.9659758

  21. Huang, C.Y., Dai, H.L.: Learning from class-imbalanced data: review of data driven methods and algorithm driven methods. Data Sci. Fina. Econo. 1(1), 21–36 (2021). https://doi.org/10.3934/DSFE.2021002

    Article  Google Scholar 

  22. Wang, S., Dai, Y., Shen, J., Xuan, J.: Research on expansion and classification of imbalanced data based on SMOTE algorithm. Scientific Reports 11, 24039 (2021). https://doi.org/10.1038/s41598-021-03430-5

    Article  Google Scholar 

  23. Risi, M., Wang, J.B., Zou, C.A., Fu, G.H.: AWSMOTE: An SVM-based adaptive weighted SMOTE for class-imbalance learning. scientific programming 2021, article 9947621 (2021). https://doi.org/10.1155/2021/9947621

  24. Magboo, V.P.C., Magboo, M.S.A.: Imputation techniques and recursive feature elimination in machine learning applied to type II diabetes classification. In: 2021 4th Artificial Intelligence and Cloud Computing Conference (AICCC ’21), pp. 201-207. Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3508259.3508288

  25. Jiang, Z., Pan, T., Zhang, C., Yang, J.: A new oversampling method based on the classification contribution degree. Symmetry 13, 194 (2021). https://doi.org/10.3390/sym13020194

    Article  Google Scholar 

  26. Beinecke, J., Heider, D.: Gaussian noise up-sampling is better suited than SMOTE and ADASYN for clinical decision making. BioData Mining 14, 49 (2021). https://doi.org/10.1186/s13040-021-00283-6

    Article  Google Scholar 

  27. Ljubobratovic, D., Vukovic, M., Brkic Bakaric, M., Jemric, T., Matetic, M.: Utilization of explainable machine learning algorithms for determination of important features in ‘Suncrest’ peach maturity prediction. Electronics 10, 3115 (2021). https://doi.org/10.3390/electronics10243115

    Article  Google Scholar 

  28. Mi, X., Zou, B., Zou, F., Hu, J.: Permutation-based identification of important biomarkers for complex diseases via machine learning models. Nature Communications 12, 3008 (2021). https://doi.org/10.1038/s41467-021-22756-2

    Article  Google Scholar 

  29. Inglis, A., Parnell, A., Hurley, C.: Visualizing variable importance and variable interaction effects in machine learning models. J. Compu. Graphi. Statis. https://doi.org/10.1080/10618600.2021.2007935

  30. Oh, S.: Predictive case-based feature importance and interaction. Information Sciences 593, 155–176 (2022). https://doi.org/10.1016/j.ins.2022.02.003

    Article  Google Scholar 

  31. Uddin, M.Z., et al.: Deep Learning for prediction of depressive symptoms in a large textual dataset. Neural Comp. Appl. 34, 721–744 (2022). https://doi.org/10.1007/s00521-021-06426-4

    Article  Google Scholar 

  32. Magboo, V.P.C., Abu, P.A.R.: Deep neural network for diagnosis of bone metastasis. In: 2022 The 5th International Conference on Software Engineering and Information Management (ICSIM) (ICSIM 2022), pp. 144–151. Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3520084.3520107

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Peter C. Magboo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Magboo, V.P.C., Magboo, M.S.A. (2022). Important Features Associated with Depression Prediction and Explainable AI. In: Li, H., Ghorbanian Zolbin, M., Krimmer, R., Kärkkäinen, J., Li, C., Suomi, R. (eds) Well-Being in the Information Society: When the Mind Breaks. WIS 2022. Communications in Computer and Information Science, vol 1626. Springer, Cham. https://doi.org/10.1007/978-3-031-14832-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14832-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14831-6

  • Online ISBN: 978-3-031-14832-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics