Abstract
Over the last two decades an utmost interest has been shown to Ambient Intelligence (AmI), with most of the related applications focusing on home settings. However, considering the ever-increasing number of ageing people occupied in the workforce, the Ambient-Assisted Working (AAW) is arguably at the beginning of its development. For an effective development and integration of AAW systems, cooperation among and shared knowledge from different stakeholders are required. This work proposes an AmI framework leveraging on Semantic Web technologies to foster employees’ wellbeing. The AAW framework makes use of a domain ontology, outcome of the cooperation between different stakeholders (employer, employees and environment) to adjust, modify and correct indoor comfort metrics in workplaces. In this paper, the proposed framework’s architecture and its underlying ontology are described, along with a use case scenario that illustrates how collaboratively modelled data can actively support ageing workers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Yaldiz, L.M., Fraccaroli, F., Truxillo, D.M.: Aging workforce issues from a multilevel approach. In: Oxford Research Encyclopedia of Psychology (2017)
Eurostat. Ageing Europe - statistics on working and moving into retirement (2020). https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Ageing_Europe_statistics_on_working_and_moving_into_retirement. Accessed 14 Jan 2022
Gams, M., Gu, I.Y.H., Härmä, A., Muñoz, A., Tam, V.: Artificial intelligence and ambient intelligence. J. Ambient Intell. Smart Environ. 11, 71–86 (2019)
Spoladore, D., Mahroo, A., Trombetta, A., Sacco, M.: DOMUS: a domestic ontology managed ubiquitous system. J. Ambient Intell. Humaniz. Comput. 13, 3037–3052 (2022)
Spoladore, D., Mahroo, A., Trombetta, A., Sacco, M.: Comfont: a semantic framework for indoor comfort and energy saving in smart homes. Electronics 8, 1449 (2019)
Sun, S., Zheng, X., Gong, B., Garcia Paredes, J., Ordieres-Meré, J.: Healthy operator 4.0: a human cyber–physical system architecture for smart workplaces. Sensors 20, 2011 (2020)
Pancardo, P., Acosta, F.D., Hernández-Nolasco, J.A., Wister, M.A., López-de-Ipiña, D.: Real-time personalized monitoring to estimate occupational heat stress in ambient assisted working. Sensors 15, 16956–16980 (2015)
Rick, V.B., et al.: WorkingAge: Smart Working Environments for AllAges. Universitätsbibliothek der RWTH Aachen (2019)
Kiyokawa, K., et al.: Owens Luis—a context-aware multi-modal smart office chair in an ambient environment. In: 2012 IEEE Virtual Reality Workshops (VRW), pp. 1–4. IEEE (2012)
Spoladore, D., Pessot, E.: Collaborative ontology engineering methodologies for the development of decision support systems: case studies in the healthcare domain. Electronics 10, 1060 (2021)
Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical owl-dl reasoner. J. Web Semant. 5, 51–53 (2007)
BioPortal. International Classification of Functioning, Disability and Health (ICF) Ontology (2012). https://bioportal.bioontology.org/ontologies/ICF. Accessed 04 Apr 2022
BioPortal. International Classification of Diseases (ICD-10) Ontology (2021). https://bioportal.bioontology.org/ontologies/ICD10. Accessed 04 Apr 2022
Spoladore, D., Mahroo, A., Sacco, M.: Fostering the collaboration among healthcare stakeholders with ICF in clinical practice: EasyICF. In: Camarinha-Matos, L.M., Boucher, X., Afsarmanesh, H. (eds.) PRO-VE 2021. IAICT, vol. 629, pp. 623–631. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85969-5_58
Lowther, S.D., et al.: Low level carbon dioxide indoors—a pollution indicator or a pollutant? A health-based perspective. Environments 8, 125 (2021)
Ye, X., Wolff, R., Yu, W., Vaneckova, P., Pan, X., Tong, S.: Ambient temperature and morbidity: a review of epidemiological evidence. Environ. Health Perspect. 120, 19–28 (2012)
Contin, M.A., Benedetto, M.M., Quinteros-Quintana, M.L., Guido, M.E.: Light pollution: the possible consequences of excessive illumination on retina. Eye 30, 255–263 (2016)
Perlmutter, M.S., Bhorade, A., Gordon, M., Hollingsworth, H., Engsberg, J.E., Baum, M.C.: Home lighting assessment for clients with low vision. Am. J. Occup. Ther. 67, 674–682 (2013)
Daniele, L., den Hartog, F., Roes, J.: Created in close interaction with the industry: the smart appliances reference (SAREF) ontology. In: Cuel, R., Young, R. (eds.) FOMI 2015. LNBIP, vol. 225, pp. 100–112. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21545-7_9
Janowicz, K., Haller, A., Cox, S., Le Phuoc, D., Lefrancois, M.: SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56, 1–10 (2019)
Pan, J.Z.: Resource description framework. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 71–90. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_3
Antoniou, G., van Harmelen, F.: Web ontology language: owl. In: Staab, S., Studer, R. (eds.) Handbook on ontologies, pp. 67–92. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24750-0_4
Perez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Datab. Syst. 34, 1–45 (2009)
Novosibirsk climate: Average Temperature, weather by month, Novosibirsk weather averages - Climate-Data.org (2022). https://en.climate-data.org/asia/russian-federation/novosibirsk-oblast/novosibirsk-459/. Accessed 11 Apr 2022
Doha climate: Average Temperature, weather by month, Doha water temperature - Climate-Data.org (2022). https://en.climate-data.org/asia/qatar/doha/doha-6368/. Accessed 11 Apr 2022
Kurmi, O.P., Lam, K.B.H., Ayres, J.G.: Indoor air pollution and the lung in low- and medium-income countries. Eur. Respir. J. 40(1), 239–254 (2012). https://doi.org/10.1183/09031936.00190211
Mu, Z., et al.: Synergistic effects of temperature and humidity on the symptoms of COPD patients. Int. J. Biometeorol. 61(11), 1919–1925 (2017). https://doi.org/10.1007/s00484-017-1379-0
Hayes, D., Jr., Collins, P.B., Khosravi, M., Lin, R.-L., Lee, L.-Y.: Bronchoconstriction triggered by breathing hot humid air in patients with asthma: role of cholinergic reflex. Am. J. Respir. Crit. Care Med. 185, 1190–1196 (2012)
Azuma, K., Kagi, N., Yanagi, U., Osawa, H.: Effects of low-level inhalation exposure to carbon dioxide in indoor environments: a short review on human health and psychomotor performance. Environ. Int. 121, 51–56 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Cilsal, T., Spoladore, D., Trombetta, A., Sacco, M. (2022). A Semantic-Based Collaborative Ambient-Assisted Working Framework. In: Camarinha-Matos, L.M., Ortiz, A., Boucher, X., OsĂłrio, A.L. (eds) Collaborative Networks in Digitalization and Society 5.0. PRO-VE 2022. IFIP Advances in Information and Communication Technology, vol 662. Springer, Cham. https://doi.org/10.1007/978-3-031-14844-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-14844-6_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14843-9
Online ISBN: 978-3-031-14844-6
eBook Packages: Computer ScienceComputer Science (R0)