Skip to main content

Towards Interdependent Safety Security Assessments Using Bowties

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security. SAFECOMP 2022 Workshops (SAFECOMP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13415))

Included in the following conference series:

  • 1245 Accesses

Abstract

We present a way to combine security and safety assessments using Bowtie Diagrams. Bowties model both the causes leading up to a central failure event and consequences which arise from that event, as well as barriers which impede events. Bowties have previously been used separately for security and safety assessments, but we suggest that a unified treatment in a single model can elegantly capture safety-security interdependencies of several kinds. We showcase our approach with the example of the October 2021 Facebook DNS shutdown, examining the chains of events and the interplay between the security and safety barriers which caused the outage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There are subtleties in different ways to treat OR gates with quantified safety or security risks, which will not be considered here.

References

  1. Abdo, H., Kaouk, M., Flaus, J.M., Masse, F.: A safety/security risk analysis approach of industrial control systems: a cyber bowtie-combining new version of attack tree with bowtie analysis. Comput. Secur. 72, 175–195 (2018)

    Article  Google Scholar 

  2. Arnaboldi, L., Czekster, R.M., Morisset, C., Metere, R.: Modelling load-changing attacks in cyber-physical systems. Electron. Notes Theor. Comput. Sci. 353, 39–60 (2020)

    Article  Google Scholar 

  3. Arnaboldi, L., Morisset, C.: Quantitative analysis of DoS attacks and client puzzles in IoT systems. In: Livraga, G., Mitchell, C. (eds.) STM 2017. LNCS, vol. 10547, pp. 224–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68063-7_16

    Chapter  Google Scholar 

  4. Bernsmed, K., Frøystad, C., Meland, P.H., Nesheim, D.A., Rødseth, Ø.J.: Visualizing cyber security risks with bow-tie diagrams. In: Liu, P., Mauw, S., Stølen, K. (eds.) GraMSec 2017. LNCS, vol. 10744, pp. 38–56. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74860-3_3

    Chapter  Google Scholar 

  5. Budde, C.E., Kolb, C., Stoelinga, M.: Attack trees vs. fault trees: two sides of the same coin from different currencies. In: Abate, A., Marin, A. (eds.) QEST 2021. LNCS, vol. 12846, pp. 457–467. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85172-9_24

    Chapter  MATH  Google Scholar 

  6. De Dianous, V., Fievez, C.: Aramis project: a more explicit demonstration of risk control through the use of bow-tie diagrams and the evaluation of safety barrier performance. J. Hazard. Mater. 130(3), 220–233 (2006)

    Article  Google Scholar 

  7. Denney, E., Pai, G., Whiteside, I.: Formal foundations for hierarchical safety cases. In: 2015 IEEE 16th International Symposium on High Assurance Systems Engineering, pp. 52–59. IEEE (2015)

    Google Scholar 

  8. Denney, E., Pai, G., Whiteside, I.: The role of safety architectures in aviation safety cases. Reliab. Eng. Syst. Saf. 191, 106502 (2019)

    Article  Google Scholar 

  9. Eames, D.P., Moffett, J.: The integration of safety and security requirements. In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS, vol. 1698, pp. 468–480. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48249-0_40

    Chapter  Google Scholar 

  10. Fila, B., Wideł, W.: Exploiting attack-defense trees to find an optimal set of countermeasures. In: 2020 IEEE 33rd Computer Security Foundations Symposium (CSF), pp. 395–410. IEEE (2020)

    Google Scholar 

  11. Gallina, B., Montecchi, L., de Oliveira, A.L., Bressan, L.P.: Multiconcern dependability-centered assurance via qualitative and quantitative coanalysis. IEEE Softw. 39(4), 39–47 (2022)

    Article  Google Scholar 

  12. Pettersen Gould, K., Bieder, C.: Safety and security: the challenges of bringing them together. In: Bieder, C., Pettersen Gould, K. (eds.) The Coupling of Safety and Security. SAST, pp. 1–8. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47229-0_1

    Chapter  Google Scholar 

  13. Guldenmund, F., Hale, A., Goossens, L., Betten, J., Duijm, N.J.: The development of an audit technique to assess the quality of safety barrier management. J. Hazard. Mater. 130(3), 234–241 (2006)

    Article  Google Scholar 

  14. Haider, Z., Gallina, B., Carlsson, A., Mazzini, S., Puri, S.: ConcertoFLA-based multi-concern assurance for space systems. ADA USER 40(1), 35 (2019)

    Google Scholar 

  15. Janardhan, S.: Update about the October 4th outage (2021). https://engineering.fb.com/2021/10/04/networking-traffic/outage/

  16. Janardhan, S., Janardhan, S.: More details about the October 4 outage (2021). https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/

  17. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-8_23

    Chapter  Google Scholar 

  18. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19751-2_6

    Chapter  Google Scholar 

  19. Kriaa, S., Bouissou, M., Colin, F., Halgand, Y., Pietre-Cambacedes, L.: Safety and security interactions modeling using the BDMP formalism: case study of a pipeline. In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 326–341. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2_22

    Chapter  Google Scholar 

  20. Kriaa, S., Pietre-Cambacedes, L., Bouissou, M., Halgand, Y.: A survey of approaches combining safety and security for industrial control systems. Reliab. Eng. Syst. Saf. 139, 156–178 (2015)

    Article  Google Scholar 

  21. Martinho, C.: Understanding how Facebook disappeared from the Internet (2021). https://blog.cloudflare.com/october-2021-facebook-outage/

  22. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11734727_17

    Chapter  Google Scholar 

  23. Nielsen, D.S.: The cause/consequence diagram method as a basis for quantitative accident analysis. Risø National Laboratory (1971)

    Google Scholar 

  24. Ren, H., Chen, X., Chen, Y.: Fault tree analysis for composite structural damage. In: Reliability Based Aircraft Maintenance Optimization Applications, pp. 115–131. Academic (2017)

    Google Scholar 

  25. de Ruijter, A., Guldenmund, F.: The bowtie method: a review. Saf. Sci. 88, 211–218 (2016)

    Article  Google Scholar 

  26. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)

    Google Scholar 

  27. Shahriar, A., Sadiq, R., Tesfamariam, S.: Risk analysis for oil & gas pipelines: a sustainability assessment approach using fuzzy based bow-tie analysis. J. Loss Prev. Process Ind. 25(3), 505–523 (2012)

    Article  Google Scholar 

  28. Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis-finding security problems that threaten the safety of a system. In: DECS: ERCIM/EWICS Workshop on Dependable Embedded and Cyber-Physical Systems (2013)

    Google Scholar 

  29. Stoelinga, M., Kolb, C., Nicoletti, S.M., Budde, C.E., Hahn, E.M.: The marriage between safety and cybersecurity: still practicing. In: Laarman, A., Sokolova, A. (eds.) SPIN 2021. LNCS, vol. 12864, pp. 3–21. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84629-9_1

    Chapter  Google Scholar 

  30. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. Tech. Rep. NUREG-0492, Nuclear Regulatory Commission Washington DC (1981)

    Google Scholar 

Download references

Acknowledgements

We’re grateful to Ewen Denney for suggesting to us to investigate bowtie diagrams for safety-security assessments, as well as comments on an early draft. This work was funded by the AISEC grant under EPSRC number EP/T027037/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Arnaboldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arnaboldi, L., Aspinall, D. (2022). Towards Interdependent Safety Security Assessments Using Bowties. In: Trapp, M., Schoitsch, E., Guiochet, J., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2022 Workshops . SAFECOMP 2022. Lecture Notes in Computer Science, vol 13415. Springer, Cham. https://doi.org/10.1007/978-3-031-14862-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14862-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14861-3

  • Online ISBN: 978-3-031-14862-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics