Abstract
In recent years, deep neural network (DNN) has shown excellent performance in many applications. However, the huge energy consumption leads to many problems. In order to solve this problem, spiking neural network (SNN) has attracted extensive research attention. SNN is the third-generation neural network that is used to process complex spatiotemporal data, and it has become a hot research topic due to its event-driven and low-power characteristics. However, the propagation function of spiking neurons is usually non-differentiable, which prevents back propagation and makes the training of SNN difficult. This paper proposes an efficient supervised learning algorithm framework based on dual-network-model spiking neural network (DNM-SNN), which is universal to various supervised learning algorithms of spiking neural networks and can effectively improve the prediction accuracy. DNM-SNN includes two key methods. Firstly, a dual model training method in training stage is proposed, which requires an additional auxiliary network same as the network used. Single model training is easy to fall into local optimal problems. By maintaining two networks, the same problem can be viewed from different perspectives, which solves the problem and improves the training effect. Second, we propose a multi-channel mix module inference method in the prediction stage. The prediction accuracy of the model is improved and the performance of the spiking neural network is optimized by multi-channel optimization of mix module. Experimental results show that the DNM-SNN outperforms the single-model algorithm on classification tasks, with a slight improvement on the MNIST dataset and a 3% improvement on the CIFAE-10 dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)
Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., et al.: STDP-based spiking deep convolutional neural networks for object recognition. Neural Netw. 99, 56–67 (2018)
Rueckauer, B., Lungu, I.A., Hu, Y., et al.: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Front. Neurosci. 11, 682 (2017)
Cao, Y., Chen, Y., Khosla, D.: Spiking deep convolutional neural networks for energy-efficient object recognition. Int. J. Comput. Vis. 113(1), 54–66 (2015)
Sengupta, A., Ye, Y., Wang, R., et al.: Going deeper in spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95 (2019)
Lin, X., Wang, X., Zhang, N., et al.: Supervised learning algorithms for spiking neural networks: a review. Acta Electonica Sinica 43(3), 577 (2015)
He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hu, Y., Tang, H., Pan, G.: Spiking deep residual networks. IEEE Trans. Neural Netw. Learn. Syst. (2018)
Zambrano, D., Nusselder, R., Scholte, H.S., et al.: Sparse computation in adaptive spiking neural networks. Front. Neurosci. 12, 987 (2019)
Kim, S., Park, S., Na, B., et al.: Spiking-yolo: spiking neural network for energy-efficient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 11270–11277 (2020)
Lapique, L.: Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization. J. Physiol. Pathol. 9, 620–635 (1907)
Dayan, P., Abbott, L.F.: Computational and Mathematical Modeling of Neural Systems. Theoretical Neuroscience. MIT Press (2001)
Han, B., Srinivasan, G., Roy, K.: RMP-SNN: residual membrane potential neuron for enabling deeper high-accuracy and low-latency spiking neural network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13558–13567 (2020)
Acknowledgements
This work was supported in part by the China Postdoctoral Science Foundation under Grant 2019M663637, in part by the Natural Science Basic Research Program of Shaanxi under Program 2021JQ-201, and in part by the National Natural Science Foundation of China under Grant 62104176.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Cao, Z., Zhang, H., Wang, Q., Ma, C. (2022). DNM-SNN: Spiking Neural Network Based on Dual Network Model. In: Shi, Z., Jin, Y., Zhang, X. (eds) Intelligence Science IV. ICIS 2022. IFIP Advances in Information and Communication Technology, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-031-14903-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-14903-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14902-3
Online ISBN: 978-3-031-14903-0
eBook Packages: Computer ScienceComputer Science (R0)