Skip to main content

A Lightweight SAR Ship Detection Network Based on Superpixel Statistical Modeling

  • Conference paper
  • First Online:
  • 930 Accesses

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 659))

Abstract

Deep learning technology has been widely used in SAR ship detection tasks. However, complex sea level backgrounds, such as sea clutter and shorelines, greatly interfere with the accuracy of the detection of ship targets. In addition, embedded devices need to deploy multiple detection models, such as FPGA, so model size and detection speed are also important indicators in practical applications. In order to solve these problems, we developed a method combining traditional detection methods with deep learning. In this paper, SAR image clutter distribution model is used to suppress SAR image clutter, and then the processed image is sent to the network for learning. Based on this idea, we have established a superpixel composite Gamma distribution model, which can obtain more accurate fitting results than pixel scale Gamma distribution and suppress background clutter more effectively. We also propose the YOLO-SX lightweight detection network, which significantly reduces model size, detection time, calculation parameters, and memory consumption. Its overall performance is superior to other detection methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Leng, X., Ji, K., Yang, K., Zou, H.: A bilateral CFAR algorithm for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 12, 1536–1540 (2015)

    Article  Google Scholar 

  2. Liu, W., et al.: SSD: single shot MultiBox detector. In: Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016, pp. 21–37 (2016)

    Google Scholar 

  3. Liao, M., Wang, C., Wang, Y., Jiang, L.: Using SAR images to detect ships from sea clutter. IEEE Geosci. Remote Sens. Lett. 5, 194–198 (2008)

    Article  Google Scholar 

  4. Zhou, X., Liu, X., Chen, Q., Zhang, Z.: Power transmission tower CFAR detection algorithm based on integrated superpixel window and adaptive statistical model. In: Proceedings of IGARSS - IEEE International Geoscience and Remote Sensing Symposium, pp. 2326–2329, July 2019

    Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105. ACM, New York (2012)

    Google Scholar 

  6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014, pp. 580–587 (2014)

    Google Scholar 

  7. Li, M., Wen, G., Huang, X., Li, K., Lin, S.: A lightweight detection model for SAR air-craft in a complex environment. Remote Sens. 13(24), 5020 (2021). https://doi.org/10.3390/rs13245020

    Article  Google Scholar 

  8. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99. IEEE, New York (2015)

    Google Scholar 

  9. Chen, Z., Gao, X.: An improved algorithm for ship target detection in SAR images based on faster R-CNN. In: Proceedings of the 2018 Ninth International Conference on Intelligent Control and Information Processing (ICICIP), Wanzhou, China, 9–11 November 2018, pp. 39–43 (2018)

    Google Scholar 

  10. Jiang, K.J., Fu, X., Qin, R., Wang, X., Ma, Z.: High-speed lightweight ship detection algorithm based on YOLO-V4 for three-channels RGB SAR image. Remote Sens. 13(10), 1909 (2021). https://doi.org/10.3390/rs13101909

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Chinese Academy of Sciences for providing the SSDD dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengxi Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Z., Hou, B., Ren, B. (2022). A Lightweight SAR Ship Detection Network Based on Superpixel Statistical Modeling. In: Shi, Z., Jin, Y., Zhang, X. (eds) Intelligence Science IV. ICIS 2022. IFIP Advances in Information and Communication Technology, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-031-14903-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14903-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14902-3

  • Online ISBN: 978-3-031-14903-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics