Abstract
Deep learning technology has been widely used in SAR ship detection tasks. However, complex sea level backgrounds, such as sea clutter and shorelines, greatly interfere with the accuracy of the detection of ship targets. In addition, embedded devices need to deploy multiple detection models, such as FPGA, so model size and detection speed are also important indicators in practical applications. In order to solve these problems, we developed a method combining traditional detection methods with deep learning. In this paper, SAR image clutter distribution model is used to suppress SAR image clutter, and then the processed image is sent to the network for learning. Based on this idea, we have established a superpixel composite Gamma distribution model, which can obtain more accurate fitting results than pixel scale Gamma distribution and suppress background clutter more effectively. We also propose the YOLO-SX lightweight detection network, which significantly reduces model size, detection time, calculation parameters, and memory consumption. Its overall performance is superior to other detection methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Leng, X., Ji, K., Yang, K., Zou, H.: A bilateral CFAR algorithm for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 12, 1536–1540 (2015)
Liu, W., et al.: SSD: single shot MultiBox detector. In: Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016, pp. 21–37 (2016)
Liao, M., Wang, C., Wang, Y., Jiang, L.: Using SAR images to detect ships from sea clutter. IEEE Geosci. Remote Sens. Lett. 5, 194–198 (2008)
Zhou, X., Liu, X., Chen, Q., Zhang, Z.: Power transmission tower CFAR detection algorithm based on integrated superpixel window and adaptive statistical model. In: Proceedings of IGARSS - IEEE International Geoscience and Remote Sensing Symposium, pp. 2326–2329, July 2019
Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105. ACM, New York (2012)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014, pp. 580–587 (2014)
Li, M., Wen, G., Huang, X., Li, K., Lin, S.: A lightweight detection model for SAR air-craft in a complex environment. Remote Sens. 13(24), 5020 (2021). https://doi.org/10.3390/rs13245020
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99. IEEE, New York (2015)
Chen, Z., Gao, X.: An improved algorithm for ship target detection in SAR images based on faster R-CNN. In: Proceedings of the 2018 Ninth International Conference on Intelligent Control and Information Processing (ICICIP), Wanzhou, China, 9–11 November 2018, pp. 39–43 (2018)
Jiang, K.J., Fu, X., Qin, R., Wang, X., Ma, Z.: High-speed lightweight ship detection algorithm based on YOLO-V4 for three-channels RGB SAR image. Remote Sens. 13(10), 1909 (2021). https://doi.org/10.3390/rs13101909
Acknowledgements
The authors would like to thank the Chinese Academy of Sciences for providing the SSDD dataset.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Guo, Z., Hou, B., Ren, B. (2022). A Lightweight SAR Ship Detection Network Based on Superpixel Statistical Modeling. In: Shi, Z., Jin, Y., Zhang, X. (eds) Intelligence Science IV. ICIS 2022. IFIP Advances in Information and Communication Technology, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-031-14903-0_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-14903-0_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-14902-3
Online ISBN: 978-3-031-14903-0
eBook Packages: Computer ScienceComputer Science (R0)