Skip to main content

Double Population Lattice Boltzmann Model for Magneto-Hydrodynamic Blood Flow in Stenotic Artery

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2022)

Abstract

Atherosclerosis, which refers to a reduction in vessels diameter due to fatty deposits, is considered as the main cause of heart attacks, strokes, and peripheral vascular disease. The malfunctioning of cardiovascular system is mainly related to haemodynamics. However, the magnetic properties of blood are of great interest in haemodynamics. In this paper, a double population lattice Boltzmann model is suggested to investigate magnetohydrodynamic blood flow in stenotic artery. Blood is considered as a homogeneous fluid with magnetic properties. The rheological behavior of blood is presented by Carreau-Yasuda model. Blood flow is considered as incompressible and laminar. The vessel walls are assumed to be rigid. The proposed lattice Boltzmann model is found to be accurate, stable and effective. Findings are presented in terms of streamlines, velocity and wall shear stress profiles, based on a variety of parameters, including Reynolds and Hartmann number. The results show that the increase in magnetic intensity causes a considerable decrease in velocity and recirculation zones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo, L.-S., Krafczyk, M., Shyy, W.: Lattice Boltzmann method for computational fluid dynamics. Encycl. Aerosp. Eng. 56, 651–660 (2010)

    Google Scholar 

  2. Gunstensen, A.K., Rothman, D.H.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43(8), 4320 (1991)

    Article  Google Scholar 

  3. Grunau, D., Chen, S., Eggert, K.: A lattice Boltzmann model for multiphase fluid flows. Phys. Fluids A 5(10), 2557–2562 (1993)

    Article  Google Scholar 

  4. Bettaibi, S., Kuznik, F., Sediki, E.: Hybrid lattice Boltzmann finite difference simulation of mixed convection flows in a lid driven square cavity. Phys. Lett. A 378, 2429–2435 (2014)

    Article  Google Scholar 

  5. Bettaibi, S., Sediki, E., Kuznik, F., Succi, S.: Lattice Boltzmann simulation of mixed convection heat transfer in a driven cavity with non-uniform heating of the bottom wall. Commun. Theor. Phys. 63(1), 91 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bettaibi, S., Kuznik, F., Sediki, E.: Hybrid LBM-MRT model coupled with finite difference method for double diffusive mixed convection in rectangular enclosure with insulated moving lid. Phys. A: Stat. Mech. Appl. 444, 311–326 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bettaibi, S., Kuznik, F., Sediki, E., Succi, S.: Numerical study of thermal diffusion and diffusion thermo effects in a differentially heated and salted driven cavity using MRT-lattice Boltzmann finite difference model. Int. J. Appl. Mech. 13(04), 2150049 (2021)

    Article  Google Scholar 

  8. Chen, S., et al.: Lattice Boltzmann computational fluid dynamics in three dimensions. J. Stat. Phys. 68(3), 379–400 (1992)

    Article  MathSciNet  Google Scholar 

  9. Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61(6), 6546 (2000)

    Article  MathSciNet  Google Scholar 

  10. Higuera, F.J., Jiménez, J.: Boltzmann approach to lattice gas simulations. EPL (Europhys. Lett.) 9(7), 663 (1989)

    Google Scholar 

  11. Koelman, J.M.V.A.: A simple lattice Boltzmann scheme for Navier-Stokes fluid flow. EPL (Europhys. Lett.) 15(6), 603 (1991)

    Article  Google Scholar 

  12. Chen, S., et al.: Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys. Rev. Lett. 67(27), 3776 (1991)

    Article  Google Scholar 

  13. Shu, C., Peng, Y., Chew, Y.T.: Simulation of natural convection in a square cavity by Taylor series expansion-and least squares-based lattice Boltzmann method. Int. J. Mod. Phys. C 13(10), 1399–1414 (2002)

    Article  Google Scholar 

  14. Bettaibi, S., Jellouli, O.: Double diffusive mixed convection with thermodiffusion effect in a driven cavity by lattice Boltzmann method. LNTCS 12599, 209–221 (2021)

    MATH  Google Scholar 

  15. Cherkaoui, I., Bettaibi, S., Barkaoui, A., Kuznik, F.: Magnetohydrodynamic blood flow study in stenotic coronary artery using lattice Boltzmann method. Comput. Methods Programs Biomed. 221, 106850 (2022)

    Article  Google Scholar 

  16. Mhamdi, B., Bettaibi, S., Jellouli, O., Chafra, M.: MRT-lattice Boltzmann hybrid model for the double diffusive mixed convection with thermodiffusion effect. Nat. Comput. 1–14 (2022). https://doi.org/10.1007/s11047-022-09884-4

  17. Alexander, D.E.: Biological materials blur boundaries. Nat. Mach. 99–120 (2017). https://doi.org/10.1016/B978-0-12-804404-9.00004-9

  18. Abraham, F., Behr, M., Heinkenschloss, M.: Shape optimisation in steady blood flow: a numerical study of non-Newtonian effects. Comput. Methods Biomech. Biomed. Eng. 8(2), 127–137 (2005)

    Article  Google Scholar 

  19. Park, H., Park, J.H., Lee, S.J.: In vivo measurement of hemodynamic information in stenosed rat blood vessels using X-ray PIV. Sci. Rep. 6(1), 1–8 (2016)

    Article  Google Scholar 

  20. Ilyani, A., Norsarahaida, A., Tasawar, H.: Magnetohydro-dynamic effects on blood flow through an irregular stenosis. Int. J. Numer. Methods Fluids 67(11), 1624–1636 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soufiene Bettaibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cherkaoui, I., Bettaibi, S., Barkaoui, A. (2022). Double Population Lattice Boltzmann Model for Magneto-Hydrodynamic Blood Flow in Stenotic Artery. In: Chopard, B., Bandini, S., Dennunzio, A., Arabi Haddad, M. (eds) Cellular Automata. ACRI 2022. Lecture Notes in Computer Science, vol 13402. Springer, Cham. https://doi.org/10.1007/978-3-031-14926-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14926-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14925-2

  • Online ISBN: 978-3-031-14926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics