Skip to main content

Performance Analysis of Regular Clocking Based Quantum-Dot Cellular Automata Logic Circuit: Fault Tolerant Approach

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13402))

Abstract

Current CMOS technology suffers from low device density and high power dissipation due to tremendous enhancement of device scaling. Quantum-dot Cellular Automata (QCA) is alternative nanotechnology to overcome these drawbacks. A cell containing four quantum dots and two electrons is a fundamental element for logic circuit realization in QCA. In QCA, clocking plays a vital role in the proper synchronization and flow of information along with the scalability of the QCA circuit. In addition, regular clocking diminishes the fabrication challenges of the nanoscale era. On the other hand, defects remain an issue in nanoscale circuit realization. This work aims to analyze the performance of underlying clocking schemes in terms of fault-tolerant capability. A full adder circuit is realized using different clocking schemes, and the HDLQ and QCADesigner simulators are used for this purpose. According to experimental results, Zig-Zag clocking exhibits better performance under cell deposition defects, whereas RES clocking stands at the top in the case of HDLQ analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blair, E., Lent, C.: Clock topologies for molecular quantum-dot cellular automata. J. Low Power Electr. Appli. 8(3), 31 (2018)

    Google Scholar 

  2. Campos, C.A.T., Marciano, A.L., Neto, O.P.V., Torres, F.S.: Use: A universal, scalable, and efficient clocking scheme for QCA. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(3), 513–517 (2015)

    Article  Google Scholar 

  3. Fazzion, E., Fonseca, O.L.H.M., Nacif, J.A.M., Vilela Neto, O.P., Fernandes, A.O., Silva, D.S.: A quantum-dot cellular automata processor design. In: 2014 27th Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 1–7 (2014)

    Google Scholar 

  4. Fijany, A., Toomarian, B.N.: New design for quantum dots cellular automata to obtain fault tolerant logic gates. J. Nanopart. Res. 3(1), 27–37 (2001)

    Article  Google Scholar 

  5. Goswami, M., Mondal, A., Mahalat, M.H., Sen, B., Sikdar, B.K.: An efficient clocking scheme for quantum-dot cellular automata. Int. J. Electron. Lett. 83–96 (2019)

    Google Scholar 

  6. Karim, F., Walus, K.: Efficient simulation of correlated dynamics in quantum-dot cellular automata (QCA). IEEE Trans. Nanotechnol. 13(2), 294–307 (2014)

    Article  Google Scholar 

  7. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  8. Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)

    Article  Google Scholar 

  9. Ottavi, M., Schiano, L., Lombardi, F., Tougaw, D.: Hdlq: a hdl environment for QCA design. J. Emerg. Technol. Comput. Syst. 2(4), 243–261 (2006)

    Article  Google Scholar 

  10. Pal, J., Bhattacharjee, S., Saha, A.K., Dutta, P.: Study on temperature stability and fault tolerance of adder in quantum-dot cellular automata. In: 2019 5th international conference on signal processing, computing and control (ispcc), pp. 69–74. IEEE (2019)

    Google Scholar 

  11. Pal, J., Pramanik, A.K., Sharma, J.S., Saha, A.K., Sen, B.: An efficient, scalable, regular clocking scheme based on quantum dot cellular automata. In: IAnalog Integrated Circuits and Signal Processing, pp. 659–670 (2021)

    Google Scholar 

  12. Pramanik, A.K., Bhowmik, D., Pal, J., Sen, P., Saha, A.K., Sen, B.: Towards the realization of regular clocking-based QCA circuits using genetic algorithm. Comput. Elect. Eng. 97, 107640 (2022)

    Google Scholar 

  13. Pramanik, A.K., Pal, J., Sen, B.: Impact of genetic algorithm on low power QCA logic circuit with regular clocking. In: Proceedings of First Asian Symposium on Cellular Automata Technology, pp. 191–203. Springer Nature, Singapore (2022), https://doi.org/10.1007/978-981-19-0542-1_14

  14. Ravindran, R.S.E., Priyadarshini, K.M., Teja, D.P.M.P., Chakravarthy, P.N., Teja, P.D.: Design of ram using quantum cellular automata (QCA) designer. Int. J. Sci. Technol. Res. 8, 1385–1390 (2019)

    Google Scholar 

  15. Sen, B., Rajoria, A., Sikdar, B.K.: Design of efficient full adder in quantum-dot cellular automata. Sci. World J. 2013 (2013)

    Google Scholar 

  16. Tahoori, M., Huang, J., Momenzadeh, M., Lombardi, F.: Testing of quantum cellular automata, Nanotechnology. IEEE Trans. 3, 432–442 (2005)

    Google Scholar 

  17. Wang, L., Xie, G., Zhu, R., Yu, C.: An optimized clocking scheme for nanoscale quantum-dot cellular automata circuit. In: 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 336–341. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhash Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pramanik, A.K., Pal, J., Sikdar, B.K., Sen, B. (2022). Performance Analysis of Regular Clocking Based Quantum-Dot Cellular Automata Logic Circuit: Fault Tolerant Approach. In: Chopard, B., Bandini, S., Dennunzio, A., Arabi Haddad, M. (eds) Cellular Automata. ACRI 2022. Lecture Notes in Computer Science, vol 13402. Springer, Cham. https://doi.org/10.1007/978-3-031-14926-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14926-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14925-2

  • Online ISBN: 978-3-031-14926-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics