Skip to main content

Monitoring of Spatio-Temporal Properties with Nonlinear SAT Solvers

  • Conference paper
  • First Online:
Formal Methods for Industrial Critical Systems (FMICS 2022)

Abstract

The automotive industry is increasingly dependent on computing systems with variable levels of critical requirements. The verification and validation methods for these systems are now leveraging complex AI methods, for which the decision algorithms introduce non-determinism, especially in autonomous driving. This paper presents a runtime verification technique agnostic to the target system, which focuses on monitoring spatio-temporal properties that abstract the evolution of objects’ behavior in their spatial and temporal flow. First, a formalization of three known traffic rules (from the Vienna convention on road traffic) is presented, where a spatio-temporal logic fragment is used. Then, these logical expressions are translated to a monitoring model written in the first-order logic, where they will be processed by a non-linear satisfiability solver. Finally, the translation allows the solver to check the validity of the encoded properties according to an instance of a specific traffic scenario (a trace). The results obtained from our tool that automatically generates a monitor from a formula show that our approach is feasible for online monitoring in a real-world environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aiello, M., Pratt-Hartmann, I., van Benthem, J.: Handbook of Spatial Logics. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4

  2. Akintunde, M.E., Botoeva, E., Kouvaros, P., Lomuscio, A.: Formal verification of neural agents in non-deterministic environments. Auton. Agents Multi-Agent Syst. 36(1), 1–36 (2021). https://doi.org/10.1007/s10458-021-09529-3

  3. Alves, G.V., Dennis, L.A., Fisher, M.: A double-level model checking approach for an agent-based autonomous vehicle and road junction regulations. J. Sens. Actuator Netw. 10(3), 41 (2021)

    Google Scholar 

  4. Aréchiga, N.: Specifying safety of autonomous vehicles in signal temporal logic. In: 2019 IEEE Intelligent Vehicles Symposium, IV 2019, Paris, France, 9–12 June 2019, pp. 58–63. IEEE (2019)

    Google Scholar 

  5. Bhuiyan, H., Governatori, G., Bond, A., Demmel, S., Badiul Islam, M., Rakotonirainy, A.: Traffic rules encoding using defeasible deontic logic. In: JURIX 2020, Brno, Czech Republic, December 2020, volume 334 of Frontiers in Artificial Intelligence and Applications, pp. 3–12. IOS Press (2020)

    Google Scholar 

  6. Borg, M., et al.: Safely entering the deep: a review of verification and validation for machine learning and a challenge elicitation in the automotive industry. J. Autom. Softw. Eng 1, 12 (2018)

    Google Scholar 

  7. Cardoso, R., et al.: A review of verification and validation for space autonomous systems. Curr. Robot. Rep. 2, 09 (2021)

    Google Scholar 

  8. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

  9. Dosovitskiy, A., Ros, G., Codevilla, F., López, A.M., Koltun, V.: CARLA: an open urban driving simulator. In: CoRL 2017, Mountain View, California, USA, November 2017, Proceedings, volume 78 of Machine Learning Research, pp. 1–16. PMLR (2017)

    Google Scholar 

  10. Allen Emerson, E.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 995–1072. Elsevier and MIT Press, London (1990)

    Google Scholar 

  11. Association for Standardisation of Automation and Measuring Systems. https://www.asam.net/standards/. Accessed 11 Apr 2022

  12. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Combining spatial and temporal logics: expressiveness vs. complexity. J. Artif. Intell. Res. 23, 167–243 (2005)

    Google Scholar 

  13. Gerevini, A., Nebel, B.: Qualitative spatio-temporal reasoning with RCC-8 and Allen’s interval calculus: computational complexity. In: ECAI’2002, Lyon, France, July 2002. Proceedings, pp. 312–316. IOS Press (2002)

    Google Scholar 

  14. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: SpaTeLl: a novel spatial-temporal logic and its applications to networked systems: a novel spatial-temporal logic and its applications to networked systems. In: HSCC 2015, Seattle, WA, USA, April 2015. Proceedings, pp. 189–198. ACM (2015)

    Google Scholar 

  15. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and interpretability. Comput. Sci. Rev. 37, 100270 (2020)

    Google Scholar 

  16. Kane, A.: Runtime monitoring for safety-critical embedded systems. Ph.D. thesis, Carnegie Mellon University, Pittsburgh (2015)

    Google Scholar 

  17. Kurucz, A., Wolter, F., Zakharyaschev, M.: Modal logics for metric spaces: open problems. In: We Will Show Them! Essays in Honour of Dov Gabbay, Vol. 2, pp. 193–108. College Publications (2005)

    Google Scholar 

  18. Kutz, O., Wolter, F., Sturm, H., Suzuki, N.-Y., Zakharyaschev, M.: Logics of metric spaces. ACM Trans. Com. Log. 4(2), 260–294 (2003)

    Google Scholar 

  19. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebraic Program. 78(5), 293–303 (2009)

    Google Scholar 

  20. Li, T., STSL: a novel spatio-temporal specification language for cyber-physical systems. In: QRS 2020, pp. 309–319. IEEE (2020)

    Google Scholar 

  21. Maierhofer, S., Rettinger, A., Charlotte Mayer, E., Althoff, M.: Formalization of interstate traffic rules in temporal logic. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 752–759. IEEE (2020)

    Google Scholar 

  22. Mehmed, A.: Runtime monitoring for safe automated driving systems. Ph.D. thesis, Mälardalen University (2020)

    Google Scholar 

  23. Muller, P.: A qualitative theory of motion based on spatio-temporal primitives. In: KR1998, Trento, June 1998, pp. 131–143. Morgan Kaufmann (1998)

    Google Scholar 

  24. United Nations. Vienna convention on road traffic (1968). https://unece.org/DAM/trans/conventn/Conv_road_traffic_EN.pdf. Accessed 11 Apr 2022

  25. Pek, C., Zahn, P., Althoff, M.: Verifying the safety of lane change maneuvers of self-driving vehicles based on formalized traffic rules. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1477–1483 (2017)

    Google Scholar 

  26. Prakken, H.: On the problem of making autonomous vehicles conform to traffic law. Artif. Intell. Law 25(3), 341–363 (2017). https://doi.org/10.1007/s10506-017-9210-0

  27. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020)

    Google Scholar 

  28. Rizald, A., et al.: Formalising and monitoring traffic rules for autonomous vehicles in Isabelle/HOL. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017. LNCS, vol. 10510, pp. 50–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66845-1_4

  29. Sahin, Y.M., Quirynen, R., Di Cairano, S.: Autonomous vehicle decision-making and monitoring based on signal temporal logic and mixed-integer programming. In: 2020 American Control Conference (ACC), pp. 454–459 (2020)

    Google Scholar 

  30. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced application domains (beyond software). Formal Methods Syst. Des. 54, 279–335 (2019). https://doi.org/10.1007/s10703-019-00337-w

  31. Schwammberger, M., Alves, G.V.: Extending urban multi-lane spatial logic to formalise road junction rules. In: FMAS 2021, Virtual, October 2021. Proceedings, volume 348 of EPTCS, pp. 1–19 (2021)

    Google Scholar 

  32. Vasile, C.-I., Tumova, J., Karaman, S., Belta, C., Rus, D.: Minimum-violation scLTL motion planning for mobility-on-demand. In: ICRA 2017, pp. 1481–1488 (2017)

    Google Scholar 

  33. Wolter, F., Zakharyaschev, M.: Reasoning about distances. In: Gottlob, G., Walsh, T. (eds.) IJCAI 2003, Acapulco, Mexico, 9–15 August 2003. Proceedings, pp. 1275–1282. Morgan Kaufmann (2003)

    Google Scholar 

  34. Xu, B., Li, Q.: A spatial logic for modeling and verification of collision-free control of vehicles. In: ICECCS 2016, Dubai, United Arab Emirates, November 2016. Proceedings, pp. 33–42. IEEE Computer Society (2016)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Regional Development Fund (ERDF) through the Competitiveness and Internationalization Operational Program (COMPETE 2020) of Portugal 2020 [Project STEROID with number 069989 (POCI-01-0247-FEDER-069989)]. This work was also partially supported by FCT/MCTES grant UIDB/04516/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André de Matos Pedro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matos Pedro, A.d., Silva, T., Sequeira, T., Lourenço, J., Costa Seco, J., Ferreira, C. (2022). Monitoring of Spatio-Temporal Properties with Nonlinear SAT Solvers. In: Groote, J.F., Huisman, M. (eds) Formal Methods for Industrial Critical Systems. FMICS 2022. Lecture Notes in Computer Science, vol 13487. Springer, Cham. https://doi.org/10.1007/978-3-031-15008-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15008-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15007-4

  • Online ISBN: 978-3-031-15008-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics