Abstract
According to the principles of compositional verification, verifying that lower-level components satisfy their specification will ensure that the whole system satisfies its top-level specification. The key step is to ensure that the lower-level specifications constitute a correct decomposition of the top-level specification. In a non-stochastic context, such decomposition can be analyzed using techniques of theorem proving. In industrial applications, especially for safety-critical systems, specifications are often of stochastic nature, for example giving a bound on the probability that system failure will occur before a given time. A decomposition of such a specification requires techniques beyond traditional theorem proving. The first contribution of the paper is a theoretical framework that allows the representation of, and reasoning about, stochastic and timed behavior of systems as well as specifications for such behaviors. The framework is based on traces that describe the continuous-time evolution of a system, and specifications are formulated using timed automata combined with probabilistic acceptance conditions. The second contribution is a novel approach to verifying decomposition of such specifications by reducing the problem to checking emptiness of the solution space for a system of linear inequalities.
Supported by Vinnova FFI through the SafeDim project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Linear optimization. https://online-optimizer.appspot.com. Accessed 27 May 2022
Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032042
Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)
Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5_75
Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov chains. ACM Trans. Comput. Logic (TOCL) 1(1), 162–170 (2000)
Baier, C., Katoen, J.P., Hermanns, H., Wolf, V.: Comparative branching-time semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005)
Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.: Multiple viewpoint contract-based specification and design. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 200–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92188-2_9
Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.: Compositional design methodology with constraint Markov chains. In: 2010 Seventh International Conference on the Quantitative Evaluation of Systems, pp. 123–132. IEEE (2010)
Clarke, E.M., Grumberg, O., Kurshan, R.P.: A synthesis of two approaches for verifying finite state concurrent systems. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 81–90. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51237-3_7
Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33826-7_16
Dantzig, G.B.: Origins of the simplex method. In: A History of Scientific Computing, pp. 141–151 (1990)
David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O automata: a complete specification theory for real-time systems. In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 91–100 (2010)
Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: a compositional reasoning methodology for the design of systems with stochastic and/or non-deterministic aspects. Form. Methods Syst. Des. 38(1), 1–32 (2011)
Delahaye, B., et al.: Abstract probabilistic automata. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 324–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_23
Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with CSL\(^\wedge \)\(\{\rm TA\}\). IEEE Trans. Softw. Eng. 35(2), 224–240 (2008)
Gössler, G., Xu, D.N., Girault, A.: Probabilistic contracts for component-based design. Form. Methods Syst. Des. 41(2), 211–231 (2012)
Grunske, L.: Specification patterns for probabilistic quality properties. In: 2008 ACM/IEEE 30th International Conference on Software Engineering, pp. 31–40. IEEE (2008)
Hampus, A., Nyberg, M.: Formally verifying decompositions of stochastic specifications (with proofs). Technical report (2022). http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-315290. oai:DiVA.org:kth-315290
ISO 21434: Road vehicles - Cybersecurity engineering (2021)
ISO 26262: Road vehicles - Functional safety (2018)
Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: Proceedings 1991 Sixth Annual IEEE Symposium on Logic in Computer Science, pp. 266–267. IEEE Computer Society (1991)
Jonsson, B., Yi, W.: Testing preorders for probabilistic processes can be characterized by simulations. Theoret. Comput. Sci. 282(1), 33–51 (2002)
Kern, C., Greenstreet, M.R.: Formal verification in hardware design: a survey. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 4(2), 123–193 (1999)
Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition systems for system design and analysis. Formal Aspects Comput. 19(1), 93–109 (2007)
Mereacre, A., Katoen, J.P., Han, T., Chen, T.: Model checking of continuous-time Markov chains against timed automata specifications. Log. Methods Comput. Sci. 7 (2011)
Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992)
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Nash, J.C.: The (Dantzig) simplex method for linear programming. Comput. Sci. Eng. 2(1), 29–31 (2000)
Nuzzo, P., Li, J., Sangiovanni-Vincentelli, A.L., Xi, Y., Li, D.: Stochastic assume-guarantee contracts for cyber-physical system design. ACM Trans. Embed. Comput. Syst. (TECS) 18(1), 1–26 (2019)
Nyberg, M., Westman, J., Gurov, D.: Formally proving compositionality in industrial systems with informal specifications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12478, pp. 348–365. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61467-6_22
Paolieri, M., Horváth, A., Vicario, E.: Probabilistic model checking of regenerative concurrent systems. IEEE Trans. Software Eng. 42(2), 153–169 (2015)
Resnick, S.: A Probability Path. Birkhäuser Boston (2019)
Roever, W.-P.: The need for compositional proof systems: a survey. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 1–22. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-5_1
Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-540-48654-1_35
Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_6
Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37 (1994)
Westman, J., Nyberg, M.: Conditions of contracts for separating responsibilities in heterogeneous systems. Form. Methods Syst. Des. 52(2), 147–192 (2017). https://doi.org/10.1007/s10703-017-0294-7
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hampus, A., Nyberg, M. (2022). Formally Verifying Decompositions of Stochastic Specifications. In: Groote, J.F., Huisman, M. (eds) Formal Methods for Industrial Critical Systems. FMICS 2022. Lecture Notes in Computer Science, vol 13487. Springer, Cham. https://doi.org/10.1007/978-3-031-15008-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-15008-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15007-4
Online ISBN: 978-3-031-15008-1
eBook Packages: Computer ScienceComputer Science (R0)