Skip to main content

Incorporating Thermal Feedback in Cutaneous Displays: Reconciling Temporal and Spatial Disparities

  • Conference paper
  • First Online:
Haptic and Audio Interaction Design (HAID 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13417))

Included in the following conference series:

  • 519 Accesses

Abstract

There are fundamental differences between the tactile and thermal sensory systems that must be accommodated when designing multisensory cutaneous displays for use in virtual or teleoperated robotic environments. In this review we highlight the marked temporal and spatial differences between the senses of cold and warmth as revealed in psychophysical experiments. Cold and warmth are distinct senses with marked differences in the time taken to respond to stimulation and in their temporal filtering processes. Such variations must be taken into account when time-varying profiles of thermal stimulation are delivered to the skin concurrent with tactile stimulation since the resulting sensations will not be perceived on the same time scale. Although it is often reported that the thermal senses are markedly inferior to the sense of touch with respect to their spatial acuity, it is also clear that there is considerable variability across the body in the accuracy with which thermal stimuli can be localized. The distal to proximal gradient in thermal acuity suggests that locations other than the palmar surface of the hand are better suited for displaying thermal cues, in contrast to the situation for tactile inputs. As was noted for temporal processes, there are differences between localizing warmth and cold stimuli, with localization being superior for cold. These properties provide benchmarks that can be used in designing thermal and multisensory displays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallace, A., Spence, C.: In Touch with the Future. The Sense of Touch from Cognitive Neuroscience to Virtual Reality. Oxford University Press, New York (2014)

    Google Scholar 

  2. Dunkelberger, N., et al.: Improving perception accuracy with multi-sensory haptic cue delivery. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10894, pp. 289–301. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93399-3_26

    Chapter  Google Scholar 

  3. Jung, J., et al.: Speech communication through the skin: design of learning protocols and initial findings. In: Marcus, A., Wang, W. (eds.) DUXU 2018. LNCS, vol. 10919, pp. 447–460. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91803-7_34

    Chapter  Google Scholar 

  4. Turcott, R., et al.: Efficient evaluation of coding strategies for transcutaneous language communication. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10894, pp. 600–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93399-3_51

    Chapter  Google Scholar 

  5. Stein, B.E.: The New Handbook of Multisensory Processes. MIT Press, Cambridge (2012)

    Google Scholar 

  6. Ho, H.-N.: Material recognition based on thermal cues: mechanisms and applications. Temperature 5(1), 36–55 (2018). https://doi.org/10.1080/23328940.2017.1372042

    Article  Google Scholar 

  7. Jones, L.A., Ho, H.-N.: Warm or cool, large or small? The challenge of thermal displays. IEEE Trans. Haptics 1, 53–70 (2008)

    Google Scholar 

  8. Drif, A., Citerin, J., Kheddar, A.: Thermal bilateral coupling in teleoperators. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2818–2823. IEEE Press, New York (2005)

    Google Scholar 

  9. Ho, H.-N., Jones, L.A.: Development and evaluation of a thermal display for material identification and discrimination. ACM Trans. Appl. Percept. 4, 1–24 (2007)

    Article  Google Scholar 

  10. Gabardi, M., Chiaradia, D., Leonardis, D., Solazzi, M., Frisoli, A.: A high performance thermal control for simulation of different materials in a fingertip haptic device. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10894, pp. 313–325. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93399-3_28

    Chapter  Google Scholar 

  11. Tewell, J., Bird, J., Buchanan, G.R.: The heat is on: a temperature display for conveying affective feedback. In: CHI 2017, pp. 1756–1767 (2017)

    Google Scholar 

  12. Tewell, J., Bird, J., Buchanan, G.R.: Heat-Nav: using temperature changes as navigational cues. In: CHI 2017, pp. 1131–1135 (2017)

    Google Scholar 

  13. Meng, X., Han, J., Chernyshov, G., Ragozin, K., Kunze, K.: ThermalDrive - towards situation awareness over thermal feedback in automated driving scenarios. In: Proceedings of the 27th International Conference on Intelligent User Interfaces, pp. 101–104 (2022)

    Google Scholar 

  14. Di Campli San Vito, P., Brewster, S., Pollick, F., Thompson, S., Skrypchuk, L., Mouzakitis, A.: Purring wheel: thermal and vibrotactile notifications on the steering wheel. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 461–469 (2020)

    Google Scholar 

  15. Singhal, A., Jones, L.A.: Dimensionality of thermal icons. In: IEEE World Haptics Conference, pp. 469–474. IEEE Press, New York (2015)

    Google Scholar 

  16. Halvey, M., Henderson, M., Brewster, S.A., Wilson, G., Hughes, S.A.: Augmenting media with thermal stimulation. In: Magnusson, C., Szymczak, D., Brewster, S. (eds.) HAID 2012. LNCS, vol. 7468, pp. 91–100. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32796-4_10

    Chapter  Google Scholar 

  17. Wettach, R., Danielsson, A., Behrens, C., Ness, T.: A thermal information display for mobile applications. In: Proceedings of the Mobile Human-Computer Interaction Conference 2007, pp. 182–185 (2007)

    Google Scholar 

  18. Wilson, G., Brewster, S., Halvey, M., Hughes, S.: Thermal feedback identification in a mobile environment. In: Oakley, I., Brewster, S. (eds.) HAID 2013. LNCS, vol. 7989, pp. 10–19. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41068-0_2

    Chapter  Google Scholar 

  19. Singhal, A., Jones, L.A.: Creating thermal icons – a model-based approach. ACM Trans. Appl. Percept. 15, 22 (2018). Article 14

    Google Scholar 

  20. Ho, H.-N., Sato, K., Kuroki, S., Watanabe, J., Maeno, T., Nishida, S.: Physical-perceptual correspondence for dynamic thermal stimulation. IEEE Trans. Haptics 10, 84–92 (2017)

    Article  Google Scholar 

  21. Gallo, S., Rognini, G., Santos-Carreras, L., Vouga, T., Blanke, O., Bleuler, H.: Encoded and crossmodal thermal stimulation through a fingertip-sized haptic display. Front. Rob. AI 2 (2015). Article 25

    Google Scholar 

  22. Murakami, T., Fernando, C.L., Person, T., Minamizawa, K.: Altered touch: miniature haptic display with force, thermal and tactile feedback for augmented haptics. In: SIGGRAPH 2017 Emerging Technologies, pp. 1–2 (2017)

    Google Scholar 

  23. Leone, C., et al.: Conduction velocity of the cold spinal pathway in healthy humans. Eur. J. Pain 24, 1923–1931 (2020). https://doi.org/10.1002/ejp.164

  24. Yarnitsky, D., Ochoa, J.L.: Warm and cold specific somatosensory systems. Brain 114, 1819–1826 (1991)

    Article  Google Scholar 

  25. Singhal, A., Jones, L.A.: Perceptual interactions in thermo-tactile displays. In: IEEE World Haptics Conference, pp. 90–95. IEEE Press, New York (2017)

    Google Scholar 

  26. Stevens, J.C., Choo, K.C.: Temperature sensitivity of the body surface over the life span. Somatosens. Mot. Res. 15, 13–28 (1998)

    Article  Google Scholar 

  27. Filingeri, D.: Neurophysiology of skin thermal sensations. Compr. Physiol. 6, 1429–1491 (2016)

    Article  Google Scholar 

  28. Li., X., Petrini, L., Defrin, R., Madeleine, P., Arendt-Nielsen, L.: High resolution topographical mapping of warm and cold sensitivities. Clin. Neurophysiol. 119, 2641–2646 (2008)

    Google Scholar 

  29. Johnson, K.O., Darian-Smith, I., LaMotte, C.: Peripheral neural determinants of temperature discrimination in man: a correlative study of responses to cooling skin. J. Neurophysiol. 36, 347–370 (1973)

    Article  Google Scholar 

  30. Filingeri, D., Zhang, H., Arens, E.A.: Thermosensory micromapping of warm and cold sensitivity across glabrous and hairy skin of male and female hands and feet. J. Appl. Physiol. 125, 723–736 (2018)

    Article  Google Scholar 

  31. Jones, L.A., Sarter, N.B.: Tactile displays: guidance for their design and application. Hum. Factors 50, 90–111 (2008)

    Article  Google Scholar 

  32. Vendrik, A.J.H., Eijkman, E.G.: Psychophysical properties determined with internal noise. In: Kenshalo, D.R. (ed.) The Skin Senses, pp. 178–193. Charles Thomas, Springfield (1968)

    Google Scholar 

  33. Nathan, P.W., Rice, R.C.: The localization of warm stimuli. Neurology 16, 533–540 (1966)

    Article  Google Scholar 

  34. Goldreich, D.: A Bayesian perceptual model replicates the cutaneous rabbit and other spatiotemporal illusions. PLoS ONE 2, e333 (2007)

    Article  Google Scholar 

  35. Singhal, A., Jones, L.: Space-time dependencies and thermal perception. In: Bello, F., Kajimoto, H., Visell, Y. (eds.) EuroHaptics 2016. LNCS, vol. 9774, pp. 291–302. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42321-0_27

    Chapter  Google Scholar 

  36. Cholewiak, R.W., Brill, J.C., Schwab, A.: Vibrotactile localization on the abdomen: effects of place and space. Percept. Psychophys. 66, 970–987 (2004)

    Article  Google Scholar 

  37. Lee, D.K., McGillis, S.L.B., Greenspan, J.D.: Somatotopic localization of thermal stimuli: I. A comparison of within- versus across-dermatomal separation of innocuous thermal stimuli. Somatos. Mot. Res. 13, 67–71 (1996)

    Google Scholar 

Download references

Acknowledgments

Research supported by the National Science Foundation under grant IIS-2006152, JSPS KAKENHI Grant Number 22H03679, and ULVAC-Hayashi MISTI Seed Fund, MIT-Japan Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynette A. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jones, L.A., Ho, HN. (2022). Incorporating Thermal Feedback in Cutaneous Displays: Reconciling Temporal and Spatial Disparities. In: Saitis, C., Farkhatdinov, I., Papetti, S. (eds) Haptic and Audio Interaction Design. HAID 2022. Lecture Notes in Computer Science, vol 13417. Springer, Cham. https://doi.org/10.1007/978-3-031-15019-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15019-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15018-0

  • Online ISBN: 978-3-031-15019-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics