Abstract
There are fundamental differences between the tactile and thermal sensory systems that must be accommodated when designing multisensory cutaneous displays for use in virtual or teleoperated robotic environments. In this review we highlight the marked temporal and spatial differences between the senses of cold and warmth as revealed in psychophysical experiments. Cold and warmth are distinct senses with marked differences in the time taken to respond to stimulation and in their temporal filtering processes. Such variations must be taken into account when time-varying profiles of thermal stimulation are delivered to the skin concurrent with tactile stimulation since the resulting sensations will not be perceived on the same time scale. Although it is often reported that the thermal senses are markedly inferior to the sense of touch with respect to their spatial acuity, it is also clear that there is considerable variability across the body in the accuracy with which thermal stimuli can be localized. The distal to proximal gradient in thermal acuity suggests that locations other than the palmar surface of the hand are better suited for displaying thermal cues, in contrast to the situation for tactile inputs. As was noted for temporal processes, there are differences between localizing warmth and cold stimuli, with localization being superior for cold. These properties provide benchmarks that can be used in designing thermal and multisensory displays.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gallace, A., Spence, C.: In Touch with the Future. The Sense of Touch from Cognitive Neuroscience to Virtual Reality. Oxford University Press, New York (2014)
Dunkelberger, N., et al.: Improving perception accuracy with multi-sensory haptic cue delivery. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10894, pp. 289–301. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93399-3_26
Jung, J., et al.: Speech communication through the skin: design of learning protocols and initial findings. In: Marcus, A., Wang, W. (eds.) DUXU 2018. LNCS, vol. 10919, pp. 447–460. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91803-7_34
Turcott, R., et al.: Efficient evaluation of coding strategies for transcutaneous language communication. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10894, pp. 600–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93399-3_51
Stein, B.E.: The New Handbook of Multisensory Processes. MIT Press, Cambridge (2012)
Ho, H.-N.: Material recognition based on thermal cues: mechanisms and applications. Temperature 5(1), 36–55 (2018). https://doi.org/10.1080/23328940.2017.1372042
Jones, L.A., Ho, H.-N.: Warm or cool, large or small? The challenge of thermal displays. IEEE Trans. Haptics 1, 53–70 (2008)
Drif, A., Citerin, J., Kheddar, A.: Thermal bilateral coupling in teleoperators. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2818–2823. IEEE Press, New York (2005)
Ho, H.-N., Jones, L.A.: Development and evaluation of a thermal display for material identification and discrimination. ACM Trans. Appl. Percept. 4, 1–24 (2007)
Gabardi, M., Chiaradia, D., Leonardis, D., Solazzi, M., Frisoli, A.: A high performance thermal control for simulation of different materials in a fingertip haptic device. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10894, pp. 313–325. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93399-3_28
Tewell, J., Bird, J., Buchanan, G.R.: The heat is on: a temperature display for conveying affective feedback. In: CHI 2017, pp. 1756–1767 (2017)
Tewell, J., Bird, J., Buchanan, G.R.: Heat-Nav: using temperature changes as navigational cues. In: CHI 2017, pp. 1131–1135 (2017)
Meng, X., Han, J., Chernyshov, G., Ragozin, K., Kunze, K.: ThermalDrive - towards situation awareness over thermal feedback in automated driving scenarios. In: Proceedings of the 27th International Conference on Intelligent User Interfaces, pp. 101–104 (2022)
Di Campli San Vito, P., Brewster, S., Pollick, F., Thompson, S., Skrypchuk, L., Mouzakitis, A.: Purring wheel: thermal and vibrotactile notifications on the steering wheel. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 461–469 (2020)
Singhal, A., Jones, L.A.: Dimensionality of thermal icons. In: IEEE World Haptics Conference, pp. 469–474. IEEE Press, New York (2015)
Halvey, M., Henderson, M., Brewster, S.A., Wilson, G., Hughes, S.A.: Augmenting media with thermal stimulation. In: Magnusson, C., Szymczak, D., Brewster, S. (eds.) HAID 2012. LNCS, vol. 7468, pp. 91–100. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32796-4_10
Wettach, R., Danielsson, A., Behrens, C., Ness, T.: A thermal information display for mobile applications. In: Proceedings of the Mobile Human-Computer Interaction Conference 2007, pp. 182–185 (2007)
Wilson, G., Brewster, S., Halvey, M., Hughes, S.: Thermal feedback identification in a mobile environment. In: Oakley, I., Brewster, S. (eds.) HAID 2013. LNCS, vol. 7989, pp. 10–19. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41068-0_2
Singhal, A., Jones, L.A.: Creating thermal icons – a model-based approach. ACM Trans. Appl. Percept. 15, 22 (2018). Article 14
Ho, H.-N., Sato, K., Kuroki, S., Watanabe, J., Maeno, T., Nishida, S.: Physical-perceptual correspondence for dynamic thermal stimulation. IEEE Trans. Haptics 10, 84–92 (2017)
Gallo, S., Rognini, G., Santos-Carreras, L., Vouga, T., Blanke, O., Bleuler, H.: Encoded and crossmodal thermal stimulation through a fingertip-sized haptic display. Front. Rob. AI 2 (2015). Article 25
Murakami, T., Fernando, C.L., Person, T., Minamizawa, K.: Altered touch: miniature haptic display with force, thermal and tactile feedback for augmented haptics. In: SIGGRAPH 2017 Emerging Technologies, pp. 1–2 (2017)
Leone, C., et al.: Conduction velocity of the cold spinal pathway in healthy humans. Eur. J. Pain 24, 1923–1931 (2020). https://doi.org/10.1002/ejp.164
Yarnitsky, D., Ochoa, J.L.: Warm and cold specific somatosensory systems. Brain 114, 1819–1826 (1991)
Singhal, A., Jones, L.A.: Perceptual interactions in thermo-tactile displays. In: IEEE World Haptics Conference, pp. 90–95. IEEE Press, New York (2017)
Stevens, J.C., Choo, K.C.: Temperature sensitivity of the body surface over the life span. Somatosens. Mot. Res. 15, 13–28 (1998)
Filingeri, D.: Neurophysiology of skin thermal sensations. Compr. Physiol. 6, 1429–1491 (2016)
Li., X., Petrini, L., Defrin, R., Madeleine, P., Arendt-Nielsen, L.: High resolution topographical mapping of warm and cold sensitivities. Clin. Neurophysiol. 119, 2641–2646 (2008)
Johnson, K.O., Darian-Smith, I., LaMotte, C.: Peripheral neural determinants of temperature discrimination in man: a correlative study of responses to cooling skin. J. Neurophysiol. 36, 347–370 (1973)
Filingeri, D., Zhang, H., Arens, E.A.: Thermosensory micromapping of warm and cold sensitivity across glabrous and hairy skin of male and female hands and feet. J. Appl. Physiol. 125, 723–736 (2018)
Jones, L.A., Sarter, N.B.: Tactile displays: guidance for their design and application. Hum. Factors 50, 90–111 (2008)
Vendrik, A.J.H., Eijkman, E.G.: Psychophysical properties determined with internal noise. In: Kenshalo, D.R. (ed.) The Skin Senses, pp. 178–193. Charles Thomas, Springfield (1968)
Nathan, P.W., Rice, R.C.: The localization of warm stimuli. Neurology 16, 533–540 (1966)
Goldreich, D.: A Bayesian perceptual model replicates the cutaneous rabbit and other spatiotemporal illusions. PLoS ONE 2, e333 (2007)
Singhal, A., Jones, L.: Space-time dependencies and thermal perception. In: Bello, F., Kajimoto, H., Visell, Y. (eds.) EuroHaptics 2016. LNCS, vol. 9774, pp. 291–302. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42321-0_27
Cholewiak, R.W., Brill, J.C., Schwab, A.: Vibrotactile localization on the abdomen: effects of place and space. Percept. Psychophys. 66, 970–987 (2004)
Lee, D.K., McGillis, S.L.B., Greenspan, J.D.: Somatotopic localization of thermal stimuli: I. A comparison of within- versus across-dermatomal separation of innocuous thermal stimuli. Somatos. Mot. Res. 13, 67–71 (1996)
Acknowledgments
Research supported by the National Science Foundation under grant IIS-2006152, JSPS KAKENHI Grant Number 22H03679, and ULVAC-Hayashi MISTI Seed Fund, MIT-Japan Program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jones, L.A., Ho, HN. (2022). Incorporating Thermal Feedback in Cutaneous Displays: Reconciling Temporal and Spatial Disparities. In: Saitis, C., Farkhatdinov, I., Papetti, S. (eds) Haptic and Audio Interaction Design. HAID 2022. Lecture Notes in Computer Science, vol 13417. Springer, Cham. https://doi.org/10.1007/978-3-031-15019-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-15019-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15018-0
Online ISBN: 978-3-031-15019-7
eBook Packages: Computer ScienceComputer Science (R0)